双指数Weibull模型

IF 0.3 Q4 MATHEMATICS
Mona Mustafa Elbiely
{"title":"双指数Weibull模型","authors":"Mona Mustafa Elbiely","doi":"10.3844/JMSSP.2019.122.135","DOIUrl":null,"url":null,"abstract":"A new lifetime model with various shapes of the hazard rate function for modeling uni-modal and bimodal data sets is introduced and studied along with its statistical properties. Before using the maximum likelihood method for estimating the unknown model parameters, we assessed its performance via a simulation study. The flexibility of the new model is illustrated via plots of the probability and hazard rate functions for three real data applications.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"17 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dual Exponentiated Weibull Model\",\"authors\":\"Mona Mustafa Elbiely\",\"doi\":\"10.3844/JMSSP.2019.122.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new lifetime model with various shapes of the hazard rate function for modeling uni-modal and bimodal data sets is introduced and studied along with its statistical properties. Before using the maximum likelihood method for estimating the unknown model parameters, we assessed its performance via a simulation study. The flexibility of the new model is illustrated via plots of the probability and hazard rate functions for three real data applications.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/JMSSP.2019.122.135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2019.122.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种具有不同形状的危险率函数的单峰和双峰寿命模型,并研究了它的统计性质。在使用最大似然法估计未知模型参数之前,我们通过仿真研究评估了它的性能。通过三个实际数据应用的概率和危险率函数图说明了新模型的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Dual Exponentiated Weibull Model
A new lifetime model with various shapes of the hazard rate function for modeling uni-modal and bimodal data sets is introduced and studied along with its statistical properties. Before using the maximum likelihood method for estimating the unknown model parameters, we assessed its performance via a simulation study. The flexibility of the new model is illustrated via plots of the probability and hazard rate functions for three real data applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信