{"title":"基于神经网络算法的机械臂运动轨迹误差","authors":"B. Xu, Chen Sem-Lin","doi":"10.1155/2023/3958434","DOIUrl":null,"url":null,"abstract":"In order to solve the problems of unstable motion and large trajectory tracking error of the manipulator when it is disturbed by the outside world, the author proposes an adaptive neural network manipulator motion trajectory error method. The author gives the dynamic equation of the manipulator and uses the positive feedback neural network to study the dynamic characteristics of the manipulator. An adaptive neural network control system is designed, and the stability and convergence of the closed-loop system are proved by the Lyapunov function. A schematic diagram of the manipulator model is established, and MATLAB/Simulink software is used to simulate the dynamic parameters of the manipulator. At the same time, it is compared and analyzed with the simulation results of the PID control system. Simulation results show that in robot arm 3, the expected motion trajectory is θ3 = 0.4cos(2πt), the initial condition θ(0) = [000]τ, the control parameter K = diag(40,40),40), the disturbance parameter τ’ = 20cos(πt), robot arm link parameters l1 = 0.62 m, l2 = 0.41 m, l3 = 0.34 m, m1 = 3.5, m2 = 2.5 kg, m3 = 2 kg, g = 9.82 m/s2, under t = 2s, the motion trajectory of the robotic arm is disturbed by the outside world, and the adaptive neural network is used to control the motion trajectory with a small tracking error, input torque ripple is small. Conclusion. The manipulator adopts the adaptive neural network control method, which can improve the control accuracy of the motion trajectory and weaken the jitter phenomenon of the manipulator motion.","PeriodicalId":46052,"journal":{"name":"Journal of Control Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Motion Trajectory Error of Robotic Arm Based on Neural Network Algorithm\",\"authors\":\"B. Xu, Chen Sem-Lin\",\"doi\":\"10.1155/2023/3958434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problems of unstable motion and large trajectory tracking error of the manipulator when it is disturbed by the outside world, the author proposes an adaptive neural network manipulator motion trajectory error method. The author gives the dynamic equation of the manipulator and uses the positive feedback neural network to study the dynamic characteristics of the manipulator. An adaptive neural network control system is designed, and the stability and convergence of the closed-loop system are proved by the Lyapunov function. A schematic diagram of the manipulator model is established, and MATLAB/Simulink software is used to simulate the dynamic parameters of the manipulator. At the same time, it is compared and analyzed with the simulation results of the PID control system. Simulation results show that in robot arm 3, the expected motion trajectory is θ3 = 0.4cos(2πt), the initial condition θ(0) = [000]τ, the control parameter K = diag(40,40),40), the disturbance parameter τ’ = 20cos(πt), robot arm link parameters l1 = 0.62 m, l2 = 0.41 m, l3 = 0.34 m, m1 = 3.5, m2 = 2.5 kg, m3 = 2 kg, g = 9.82 m/s2, under t = 2s, the motion trajectory of the robotic arm is disturbed by the outside world, and the adaptive neural network is used to control the motion trajectory with a small tracking error, input torque ripple is small. Conclusion. The manipulator adopts the adaptive neural network control method, which can improve the control accuracy of the motion trajectory and weaken the jitter phenomenon of the manipulator motion.\",\"PeriodicalId\":46052,\"journal\":{\"name\":\"Journal of Control Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Control Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3958434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Control Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3958434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2
摘要
为了解决机械手受外界干扰时运动不稳定和轨迹跟踪误差大的问题,提出了一种自适应神经网络机械手运动轨迹误差方法。给出了机械手的动力学方程,并利用正反馈神经网络对机械手的动力学特性进行了研究。设计了自适应神经网络控制系统,并用李雅普诺夫函数证明了闭环系统的稳定性和收敛性。建立了机械手模型的原理图,利用MATLAB/Simulink软件对机械手的动态参数进行了仿真。同时,与PID控制系统的仿真结果进行了对比分析。仿真结果表明,在机械臂3中,预期的运动轨迹是θ3 = 0.4 cos(2πt),初始条件θ(0)=[000]τ,控制参数K =诊断接头(40、40),40),扰动参数τ= 20 cos(πt),机器人手臂链接参数l1 = 0.62 m, l2 = 0.41 m, l3 = 0.34 m, m1 = 3.5平方米= 2.5公斤,m3 = 2公斤,g = 9.82米/ s2,在t = 2 s,机械臂的运动轨迹由外界干扰,采用自适应神经网络控制运动轨迹,跟踪误差小,输入转矩脉动小。结论。该机械手采用自适应神经网络控制方法,提高了运动轨迹的控制精度,减弱了机械手运动的抖动现象。
Motion Trajectory Error of Robotic Arm Based on Neural Network Algorithm
In order to solve the problems of unstable motion and large trajectory tracking error of the manipulator when it is disturbed by the outside world, the author proposes an adaptive neural network manipulator motion trajectory error method. The author gives the dynamic equation of the manipulator and uses the positive feedback neural network to study the dynamic characteristics of the manipulator. An adaptive neural network control system is designed, and the stability and convergence of the closed-loop system are proved by the Lyapunov function. A schematic diagram of the manipulator model is established, and MATLAB/Simulink software is used to simulate the dynamic parameters of the manipulator. At the same time, it is compared and analyzed with the simulation results of the PID control system. Simulation results show that in robot arm 3, the expected motion trajectory is θ3 = 0.4cos(2πt), the initial condition θ(0) = [000]τ, the control parameter K = diag(40,40),40), the disturbance parameter τ’ = 20cos(πt), robot arm link parameters l1 = 0.62 m, l2 = 0.41 m, l3 = 0.34 m, m1 = 3.5, m2 = 2.5 kg, m3 = 2 kg, g = 9.82 m/s2, under t = 2s, the motion trajectory of the robotic arm is disturbed by the outside world, and the adaptive neural network is used to control the motion trajectory with a small tracking error, input torque ripple is small. Conclusion. The manipulator adopts the adaptive neural network control method, which can improve the control accuracy of the motion trajectory and weaken the jitter phenomenon of the manipulator motion.
期刊介绍:
Journal of Control Science and Engineering is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of control science and engineering.