{"title":"一类$ C^{2} $拟周期Schrödinger共环的谱点密度","authors":"F. Wu, Linlin Fu, Jiahao Xu","doi":"10.3934/dcds.2021201","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>For <inline-formula><tex-math id=\"M2\">\\begin{document}$ C^2 $\\end{document}</tex-math></inline-formula> cos-type potentials, large coupling constants, and fixed <inline-formula><tex-math id=\"M3\">\\begin{document}$ Diophantine $\\end{document}</tex-math></inline-formula> frequency, we show that the density of the spectral points associated with the Schrödinger operator is larger than 0. In other words, for every fixed spectral point <inline-formula><tex-math id=\"M4\">\\begin{document}$ E $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\liminf\\limits_{\\epsilon\\to 0}\\frac{|(E-\\epsilon,E+\\epsilon)\\bigcap\\Sigma_{\\alpha,\\lambda\\upsilon}|}{2\\epsilon} = \\beta $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\beta\\in [\\frac{1}{2},1] $\\end{document}</tex-math></inline-formula>. Our approach is a further improvement on the papers [<xref ref-type=\"bibr\" rid=\"b15\">15</xref>] and [<xref ref-type=\"bibr\" rid=\"b17\">17</xref>].</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the density of certain spectral points for a class of $ C^{2} $ quasiperiodic Schrödinger cocycles\",\"authors\":\"F. Wu, Linlin Fu, Jiahao Xu\",\"doi\":\"10.3934/dcds.2021201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>For <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ C^2 $\\\\end{document}</tex-math></inline-formula> cos-type potentials, large coupling constants, and fixed <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ Diophantine $\\\\end{document}</tex-math></inline-formula> frequency, we show that the density of the spectral points associated with the Schrödinger operator is larger than 0. In other words, for every fixed spectral point <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ E $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\liminf\\\\limits_{\\\\epsilon\\\\to 0}\\\\frac{|(E-\\\\epsilon,E+\\\\epsilon)\\\\bigcap\\\\Sigma_{\\\\alpha,\\\\lambda\\\\upsilon}|}{2\\\\epsilon} = \\\\beta $\\\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\beta\\\\in [\\\\frac{1}{2},1] $\\\\end{document}</tex-math></inline-formula>. Our approach is a further improvement on the papers [<xref ref-type=\\\"bibr\\\" rid=\\\"b15\\\">15</xref>] and [<xref ref-type=\\\"bibr\\\" rid=\\\"b17\\\">17</xref>].</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2021201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
For \begin{document}$ C^2 $\end{document} cos-type potentials, large coupling constants, and fixed \begin{document}$ Diophantine $\end{document} frequency, we show that the density of the spectral points associated with the Schrödinger operator is larger than 0. In other words, for every fixed spectral point \begin{document}$ E $\end{document}, \begin{document}$ \liminf\limits_{\epsilon\to 0}\frac{|(E-\epsilon,E+\epsilon)\bigcap\Sigma_{\alpha,\lambda\upsilon}|}{2\epsilon} = \beta $\end{document}, where \begin{document}$ \beta\in [\frac{1}{2},1] $\end{document}. Our approach is a further improvement on the papers [15] and [17].
On the density of certain spectral points for a class of $ C^{2} $ quasiperiodic Schrödinger cocycles
For \begin{document}$ C^2 $\end{document} cos-type potentials, large coupling constants, and fixed \begin{document}$ Diophantine $\end{document} frequency, we show that the density of the spectral points associated with the Schrödinger operator is larger than 0. In other words, for every fixed spectral point \begin{document}$ E $\end{document}, \begin{document}$ \liminf\limits_{\epsilon\to 0}\frac{|(E-\epsilon,E+\epsilon)\bigcap\Sigma_{\alpha,\lambda\upsilon}|}{2\epsilon} = \beta $\end{document}, where \begin{document}$ \beta\in [\frac{1}{2},1] $\end{document}. Our approach is a further improvement on the papers [15] and [17].