自主保守动力系统的二次第一积分

M. Tsamparlis, Antonios Mitsopoulos
{"title":"自主保守动力系统的二次第一积分","authors":"M. Tsamparlis, Antonios Mitsopoulos","doi":"10.1063/1.5141392","DOIUrl":null,"url":null,"abstract":"An autonomous dynamical system is described by a system of second order differential equations whose solution gives the trajectories of the system. The solution is facilitated by the use of first integrals (FIs) that are used to reduce the order of the system of differential equations and, if there are enough of them, to determine the solution. Therefore, it is important that there exists a systematic method to determine the FIs. On the other hand, a system of second order differential equations defines a kinetic energy, which provides a symmetric second order tensor called kinetic metric of the system. This metric via its symmetries brings into the scene the numerous methods of differential geometry and hence it is apparent that one should manage to relate the determination of the FIs to the symmetries of the kinetic metric. The subject of this work is to provide a theorem that realizes this scenario. The method we follow considers the generic quadratic FI of the form $I=K_{ab}(t,q^{c})\\dot{q}^{a}\\dot{q}^{b}+K_{a}(t,q^{c})\\dot{q}^{a} +K(t,q^{c})$ where $K_{ab}(t,q^{c}), K_{a}(t,q^{c}), K(t,q^{c})$ are unknown tensor quantities and requires $dI/dt = 0$. This condition leads to a system of differential equations involving the coefficients of $I$ whose solution provides all possible quadratic FIs of this form. We demonstrate the application of the theorem in the classical cases of the geodesic equations and the generalized Kepler potential. We also obtain and discuss the time-dependent FIs.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Quadratic first integrals of autonomous conservative dynamical systems\",\"authors\":\"M. Tsamparlis, Antonios Mitsopoulos\",\"doi\":\"10.1063/1.5141392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An autonomous dynamical system is described by a system of second order differential equations whose solution gives the trajectories of the system. The solution is facilitated by the use of first integrals (FIs) that are used to reduce the order of the system of differential equations and, if there are enough of them, to determine the solution. Therefore, it is important that there exists a systematic method to determine the FIs. On the other hand, a system of second order differential equations defines a kinetic energy, which provides a symmetric second order tensor called kinetic metric of the system. This metric via its symmetries brings into the scene the numerous methods of differential geometry and hence it is apparent that one should manage to relate the determination of the FIs to the symmetries of the kinetic metric. The subject of this work is to provide a theorem that realizes this scenario. The method we follow considers the generic quadratic FI of the form $I=K_{ab}(t,q^{c})\\\\dot{q}^{a}\\\\dot{q}^{b}+K_{a}(t,q^{c})\\\\dot{q}^{a} +K(t,q^{c})$ where $K_{ab}(t,q^{c}), K_{a}(t,q^{c}), K(t,q^{c})$ are unknown tensor quantities and requires $dI/dt = 0$. This condition leads to a system of differential equations involving the coefficients of $I$ whose solution provides all possible quadratic FIs of this form. We demonstrate the application of the theorem in the classical cases of the geodesic equations and the generalized Kepler potential. We also obtain and discuss the time-dependent FIs.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5141392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5141392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

一个自主动力系统是用二阶微分方程组来描述的,其解给出了系统的轨迹。第一积分(fi)用于降低微分方程系统的阶,如果有足够多的第一积分,则用于确定解,从而简化了求解。因此,有一个系统的方法来确定fi是很重要的。另一方面,一个二阶微分方程系统定义了动能,它提供了一个对称的二阶张量,称为系统的动能度规。这个度规通过其对称性引入了微分几何的许多方法,因此很明显,人们应该设法将fi的确定与动力学度规的对称性联系起来。这项工作的主题是提供一个定理来实现这种情况。我们遵循的方法考虑了表单的通用二次FI I =美元K_ {ab} (t, q ^ {c}) \点{q} ^{} \点{q} ^ {b} + K_{一}(t, q ^ {c}) \点{q} ^{一}+ K (t, q ^ {c}),美元K_ {ab} (t, q ^ {c}), K_{一}(t, q ^ {c}), K (t, q ^ {c})是未知的张量量,需要美元dI / dt = 0美元。这个条件导致一个包含系数$I$的微分方程组,它的解提供了所有可能的这种形式的二次fi。我们证明了该定理在测地线方程和广义开普勒势的经典情况下的应用。我们还得到并讨论了随时间变化的FIs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadratic first integrals of autonomous conservative dynamical systems
An autonomous dynamical system is described by a system of second order differential equations whose solution gives the trajectories of the system. The solution is facilitated by the use of first integrals (FIs) that are used to reduce the order of the system of differential equations and, if there are enough of them, to determine the solution. Therefore, it is important that there exists a systematic method to determine the FIs. On the other hand, a system of second order differential equations defines a kinetic energy, which provides a symmetric second order tensor called kinetic metric of the system. This metric via its symmetries brings into the scene the numerous methods of differential geometry and hence it is apparent that one should manage to relate the determination of the FIs to the symmetries of the kinetic metric. The subject of this work is to provide a theorem that realizes this scenario. The method we follow considers the generic quadratic FI of the form $I=K_{ab}(t,q^{c})\dot{q}^{a}\dot{q}^{b}+K_{a}(t,q^{c})\dot{q}^{a} +K(t,q^{c})$ where $K_{ab}(t,q^{c}), K_{a}(t,q^{c}), K(t,q^{c})$ are unknown tensor quantities and requires $dI/dt = 0$. This condition leads to a system of differential equations involving the coefficients of $I$ whose solution provides all possible quadratic FIs of this form. We demonstrate the application of the theorem in the classical cases of the geodesic equations and the generalized Kepler potential. We also obtain and discuss the time-dependent FIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信