{"title":"金属对大豆脲酶的抑制作用作为测定水样中重金属的工具的评价","authors":"A. M. Magomya, J. T. Barminas, S. Osemeahon","doi":"10.9790/5736-1006026170","DOIUrl":null,"url":null,"abstract":"Inhibition of soybean (Glycine max) urease by heavy metal ions has been investigated with a view to developing a method for the indirect determination the heavy metals. Urease activity was assayed as a function of metal concentration in the presence of Cd 2+ , Cr 3+ , As 3+ , Cu 2+ , Pb 2+ and Zn 2+ . Our results revealed concentration dependent inhibition of urease activity within the range of 0.001 – 10 mg/L for Cu 2+ , As 3+ , Cr 3+ and Cd 2+ and 0.1 – 10 mg/L for Zn 2+ and Pb 2+ . The inhibitory strengths of the metals as evaluated from their IC50 values showed the following ranking: Cu 2+ > As 3+ > Cr 3+ > Cd 2+ >Zn 2+ > Pb 2+ . Assays for multi-metal solutions revealed similar findings as the single-metal systems but with higher inhibitory strengths. The calibration plots of % inhibition against concentration displayed different linear ranges for the investigated metals; Cu As, Cr and Cd showed linearity within the range of 0.01 – 10mg/L while Zn and Pb plots were linear within 0.1 – 10 mg/L. The applicability of the assay for the quantitative determination of heavy metals was evaluated by analysing synthetic water samples and comparing the results with a standard method (AAS). T-test examination revealed 74% agreement between the two methods. The results of this study show that soybean urease can be valuable for the inhibitive determination of heavy metals in aqueous samples.","PeriodicalId":14488,"journal":{"name":"IOSR Journal of Applied Chemistry","volume":"1 1","pages":"61-70"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Assessment of Metal - Induced Inhibition of Soybean Urease as a Tool for Measuring Heavy Metals in Aqueous Samples\",\"authors\":\"A. M. Magomya, J. T. Barminas, S. Osemeahon\",\"doi\":\"10.9790/5736-1006026170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inhibition of soybean (Glycine max) urease by heavy metal ions has been investigated with a view to developing a method for the indirect determination the heavy metals. Urease activity was assayed as a function of metal concentration in the presence of Cd 2+ , Cr 3+ , As 3+ , Cu 2+ , Pb 2+ and Zn 2+ . Our results revealed concentration dependent inhibition of urease activity within the range of 0.001 – 10 mg/L for Cu 2+ , As 3+ , Cr 3+ and Cd 2+ and 0.1 – 10 mg/L for Zn 2+ and Pb 2+ . The inhibitory strengths of the metals as evaluated from their IC50 values showed the following ranking: Cu 2+ > As 3+ > Cr 3+ > Cd 2+ >Zn 2+ > Pb 2+ . Assays for multi-metal solutions revealed similar findings as the single-metal systems but with higher inhibitory strengths. The calibration plots of % inhibition against concentration displayed different linear ranges for the investigated metals; Cu As, Cr and Cd showed linearity within the range of 0.01 – 10mg/L while Zn and Pb plots were linear within 0.1 – 10 mg/L. The applicability of the assay for the quantitative determination of heavy metals was evaluated by analysing synthetic water samples and comparing the results with a standard method (AAS). T-test examination revealed 74% agreement between the two methods. The results of this study show that soybean urease can be valuable for the inhibitive determination of heavy metals in aqueous samples.\",\"PeriodicalId\":14488,\"journal\":{\"name\":\"IOSR Journal of Applied Chemistry\",\"volume\":\"1 1\",\"pages\":\"61-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOSR Journal of Applied Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9790/5736-1006026170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOSR Journal of Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9790/5736-1006026170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of Metal - Induced Inhibition of Soybean Urease as a Tool for Measuring Heavy Metals in Aqueous Samples
Inhibition of soybean (Glycine max) urease by heavy metal ions has been investigated with a view to developing a method for the indirect determination the heavy metals. Urease activity was assayed as a function of metal concentration in the presence of Cd 2+ , Cr 3+ , As 3+ , Cu 2+ , Pb 2+ and Zn 2+ . Our results revealed concentration dependent inhibition of urease activity within the range of 0.001 – 10 mg/L for Cu 2+ , As 3+ , Cr 3+ and Cd 2+ and 0.1 – 10 mg/L for Zn 2+ and Pb 2+ . The inhibitory strengths of the metals as evaluated from their IC50 values showed the following ranking: Cu 2+ > As 3+ > Cr 3+ > Cd 2+ >Zn 2+ > Pb 2+ . Assays for multi-metal solutions revealed similar findings as the single-metal systems but with higher inhibitory strengths. The calibration plots of % inhibition against concentration displayed different linear ranges for the investigated metals; Cu As, Cr and Cd showed linearity within the range of 0.01 – 10mg/L while Zn and Pb plots were linear within 0.1 – 10 mg/L. The applicability of the assay for the quantitative determination of heavy metals was evaluated by analysing synthetic water samples and comparing the results with a standard method (AAS). T-test examination revealed 74% agreement between the two methods. The results of this study show that soybean urease can be valuable for the inhibitive determination of heavy metals in aqueous samples.