基于tweet和tweet转发表示的TF-IDF加权检测Twitter上的垃圾邮件账户

A. M. Priyatno, Lidya Ningsih
{"title":"基于tweet和tweet转发表示的TF-IDF加权检测Twitter上的垃圾邮件账户","authors":"A. M. Priyatno, Lidya Ningsih","doi":"10.32520/stmsi.v11i3.1995","DOIUrl":null,"url":null,"abstract":"pembobotan TF-IDF untuk mendeteksi akun spammer di Twitter berdasarkan tweet dan representasi retweet dari tweet. Tujuan dari penelitian ini adalah untuk mendeteksi Bot Spammer atau Human menggunakan teknik klasifikasi meggunakan algoritma naive bayes. Hasil percobaan terbaik pada pembagian 70% data latih dan 30% data uji mendapatkan akurasi 92% dengan precision dan recall sebesar 100% dan 87.5%. Hal ini menunjukan berhasil mendeteksi akun bot spammer di Twitter. Abstract Twitter is a social media service that is often used (popular) as a means of communication between users. Twitter's popularity makes spammers spam for personal purposes and gains. Bot spammers are user abuse on Twitter social media. Spammers spread spam repeatedly to other users. This spam is done with the aim of achieving trending topics. Spam activity is carried out by imitating the behavior patterns of real users so that they are not detected as acts of Twitter abuse. in this paper proposed a TF-IDF weighting to detect spammer accounts on Twitter based on tweets and retweet representation of tweets. The purpose of this study is to detect Bot Spammers or Humans using a classification technique using the Naive Bayes algorithm. The best experimental results in the division of 70% training data and 30% test data obtained 92% accuracy with precision and recall of 100% and 87.5%, respectively. This shows that it has successfully detected spammer accounts on Twitter.","PeriodicalId":32367,"journal":{"name":"Sistemasi Jurnal Sistem Informasi","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TF-IDF Weighting to Detect Spammer Accounts on Twitter based on Tweets and Retweet Representation of Tweets\",\"authors\":\"A. M. Priyatno, Lidya Ningsih\",\"doi\":\"10.32520/stmsi.v11i3.1995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"pembobotan TF-IDF untuk mendeteksi akun spammer di Twitter berdasarkan tweet dan representasi retweet dari tweet. Tujuan dari penelitian ini adalah untuk mendeteksi Bot Spammer atau Human menggunakan teknik klasifikasi meggunakan algoritma naive bayes. Hasil percobaan terbaik pada pembagian 70% data latih dan 30% data uji mendapatkan akurasi 92% dengan precision dan recall sebesar 100% dan 87.5%. Hal ini menunjukan berhasil mendeteksi akun bot spammer di Twitter. Abstract Twitter is a social media service that is often used (popular) as a means of communication between users. Twitter's popularity makes spammers spam for personal purposes and gains. Bot spammers are user abuse on Twitter social media. Spammers spread spam repeatedly to other users. This spam is done with the aim of achieving trending topics. Spam activity is carried out by imitating the behavior patterns of real users so that they are not detected as acts of Twitter abuse. in this paper proposed a TF-IDF weighting to detect spammer accounts on Twitter based on tweets and retweet representation of tweets. The purpose of this study is to detect Bot Spammers or Humans using a classification technique using the Naive Bayes algorithm. The best experimental results in the division of 70% training data and 30% test data obtained 92% accuracy with precision and recall of 100% and 87.5%, respectively. This shows that it has successfully detected spammer accounts on Twitter.\",\"PeriodicalId\":32367,\"journal\":{\"name\":\"Sistemasi Jurnal Sistem Informasi\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sistemasi Jurnal Sistem Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32520/stmsi.v11i3.1995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sistemasi Jurnal Sistem Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32520/stmsi.v11i3.1995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
TF-IDF Weighting to Detect Spammer Accounts on Twitter based on Tweets and Retweet Representation of Tweets
pembobotan TF-IDF untuk mendeteksi akun spammer di Twitter berdasarkan tweet dan representasi retweet dari tweet. Tujuan dari penelitian ini adalah untuk mendeteksi Bot Spammer atau Human menggunakan teknik klasifikasi meggunakan algoritma naive bayes. Hasil percobaan terbaik pada pembagian 70% data latih dan 30% data uji mendapatkan akurasi 92% dengan precision dan recall sebesar 100% dan 87.5%. Hal ini menunjukan berhasil mendeteksi akun bot spammer di Twitter. Abstract Twitter is a social media service that is often used (popular) as a means of communication between users. Twitter's popularity makes spammers spam for personal purposes and gains. Bot spammers are user abuse on Twitter social media. Spammers spread spam repeatedly to other users. This spam is done with the aim of achieving trending topics. Spam activity is carried out by imitating the behavior patterns of real users so that they are not detected as acts of Twitter abuse. in this paper proposed a TF-IDF weighting to detect spammer accounts on Twitter based on tweets and retweet representation of tweets. The purpose of this study is to detect Bot Spammers or Humans using a classification technique using the Naive Bayes algorithm. The best experimental results in the division of 70% training data and 30% test data obtained 92% accuracy with precision and recall of 100% and 87.5%, respectively. This shows that it has successfully detected spammer accounts on Twitter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
66
审稿时长
43 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信