挖掘最大频繁子图的复杂性

B. Kimelfeld, Phokion G. Kolaitis
{"title":"挖掘最大频繁子图的复杂性","authors":"B. Kimelfeld, Phokion G. Kolaitis","doi":"10.1145/2463664.2465222","DOIUrl":null,"url":null,"abstract":"A frequent subgraph of a given collection of graphs is a graph that is isomorphic to a subgraph of at least as many graphs in the collection as a given threshold. Frequent subgraphs generalize frequent itemsets and arise in various contexts, from bioinformatics to the Web. Since the space of frequent subgraphs is typically extremely large, research in graph mining has focused on special types of frequent subgraphs that can be orders of magnitude smaller in number, yet encapsulate the space of all frequent subgraphs. Maximal frequent subgraphs (i.e., the ones not properly contained in any frequent subgraph) constitute the most useful such type.\n In this paper, we embark on a comprehensive investigation of the computational complexity of mining maximal frequent subgraphs. Our study is carried out by considering the effect of three different parameters: possible restrictions on the class of graphs; a fixed bound on the threshold; and a fixed bound on the number of desired answers. We focus on specific classes of connected graphs: general graphs, planar graphs, graphs of bounded degree, and graphs of bounded tree-width (trees being a special case). Moreover, each class has two variants: the one in which the nodes are unlabeled, and the one in which they are uniquely labeled. We delineate the complexity of the enumeration problem for each of these variants by determining when it is solvable in (total or incremental) polynomial time and when it is NP-hard. Specifically, for the labeled classes, we show that bounding the threshold yields tractability but, in most cases, bounding the number of answers does not, unless P=NP; an exception is the case of labeled trees, where bounding either of these two parameters yields tractability. The state of affairs turns out to be quite different for the unlabeled classes. The main (and most challenging to prove) result concerns unlabeled trees: we show NP-hardness, even if the input consists of two trees, and both the threshold and the number of desired answers are equal to just two. In other words, we establish that the following problem is NP-complete: given two unlabeled trees, do they have more than one maximal subtree in common?","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"1 1","pages":"13-24"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"The complexity of mining maximal frequent subgraphs\",\"authors\":\"B. Kimelfeld, Phokion G. Kolaitis\",\"doi\":\"10.1145/2463664.2465222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A frequent subgraph of a given collection of graphs is a graph that is isomorphic to a subgraph of at least as many graphs in the collection as a given threshold. Frequent subgraphs generalize frequent itemsets and arise in various contexts, from bioinformatics to the Web. Since the space of frequent subgraphs is typically extremely large, research in graph mining has focused on special types of frequent subgraphs that can be orders of magnitude smaller in number, yet encapsulate the space of all frequent subgraphs. Maximal frequent subgraphs (i.e., the ones not properly contained in any frequent subgraph) constitute the most useful such type.\\n In this paper, we embark on a comprehensive investigation of the computational complexity of mining maximal frequent subgraphs. Our study is carried out by considering the effect of three different parameters: possible restrictions on the class of graphs; a fixed bound on the threshold; and a fixed bound on the number of desired answers. We focus on specific classes of connected graphs: general graphs, planar graphs, graphs of bounded degree, and graphs of bounded tree-width (trees being a special case). Moreover, each class has two variants: the one in which the nodes are unlabeled, and the one in which they are uniquely labeled. We delineate the complexity of the enumeration problem for each of these variants by determining when it is solvable in (total or incremental) polynomial time and when it is NP-hard. Specifically, for the labeled classes, we show that bounding the threshold yields tractability but, in most cases, bounding the number of answers does not, unless P=NP; an exception is the case of labeled trees, where bounding either of these two parameters yields tractability. The state of affairs turns out to be quite different for the unlabeled classes. The main (and most challenging to prove) result concerns unlabeled trees: we show NP-hardness, even if the input consists of two trees, and both the threshold and the number of desired answers are equal to just two. In other words, we establish that the following problem is NP-complete: given two unlabeled trees, do they have more than one maximal subtree in common?\",\"PeriodicalId\":92118,\"journal\":{\"name\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"volume\":\"1 1\",\"pages\":\"13-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2463664.2465222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463664.2465222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

给定图集合的频繁子图是与集合中至少与给定阈值相同的图的子图同构的图。频繁子图概括了频繁项集,并出现在从生物信息学到网络的各种环境中。由于频繁子图的空间通常非常大,图挖掘的研究主要集中在特殊类型的频繁子图上,这些频繁子图的数量可以小几个数量级,但却封装了所有频繁子图的空间。最大频繁子图(即那些没有被适当地包含在任何频繁子图中的子图)构成了最有用的这种类型。本文对挖掘最大频繁子图的计算复杂度进行了全面的研究。我们的研究是通过考虑三个不同参数的影响来进行的:对图类的可能限制;门槛:门槛上的固定界限;并且对期望答案的数量有一个固定的界限。我们专注于连接图的特定类别:一般图、平面图、有界度图和有界树宽度图(树是一种特殊情况)。此外,每个类都有两个变体:一个是节点未标记的变体,另一个是节点被唯一标记的变体。我们通过确定枚举问题何时可在(总或增量)多项式时间内解决以及何时是np困难来描述每个这些变量的枚举问题的复杂性。具体来说,对于有标记的类,我们表明限定阈值会产生可追溯性,但在大多数情况下,限定答案的数量不会,除非P=NP;一个例外是标记树的情况,其中这两个参数中的任何一个都可以产生可跟踪性。对于未被标记的阶级来说,情况就大不相同了。主要的(也是最难证明的)结果与未标记树有关:我们显示了np -硬度,即使输入由两棵树组成,并且阈值和期望答案的数量都等于两个。换句话说,我们确定以下问题是np完全的:给定两棵未标记的树,它们是否有一个以上的最大子树?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The complexity of mining maximal frequent subgraphs
A frequent subgraph of a given collection of graphs is a graph that is isomorphic to a subgraph of at least as many graphs in the collection as a given threshold. Frequent subgraphs generalize frequent itemsets and arise in various contexts, from bioinformatics to the Web. Since the space of frequent subgraphs is typically extremely large, research in graph mining has focused on special types of frequent subgraphs that can be orders of magnitude smaller in number, yet encapsulate the space of all frequent subgraphs. Maximal frequent subgraphs (i.e., the ones not properly contained in any frequent subgraph) constitute the most useful such type. In this paper, we embark on a comprehensive investigation of the computational complexity of mining maximal frequent subgraphs. Our study is carried out by considering the effect of three different parameters: possible restrictions on the class of graphs; a fixed bound on the threshold; and a fixed bound on the number of desired answers. We focus on specific classes of connected graphs: general graphs, planar graphs, graphs of bounded degree, and graphs of bounded tree-width (trees being a special case). Moreover, each class has two variants: the one in which the nodes are unlabeled, and the one in which they are uniquely labeled. We delineate the complexity of the enumeration problem for each of these variants by determining when it is solvable in (total or incremental) polynomial time and when it is NP-hard. Specifically, for the labeled classes, we show that bounding the threshold yields tractability but, in most cases, bounding the number of answers does not, unless P=NP; an exception is the case of labeled trees, where bounding either of these two parameters yields tractability. The state of affairs turns out to be quite different for the unlabeled classes. The main (and most challenging to prove) result concerns unlabeled trees: we show NP-hardness, even if the input consists of two trees, and both the threshold and the number of desired answers are equal to just two. In other words, we establish that the following problem is NP-complete: given two unlabeled trees, do they have more than one maximal subtree in common?
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信