{"title":"总体分位数平滑贝叶斯Bootstrap区间的高阶覆盖","authors":"David M. Kaplan, Lonnie Hofmann","doi":"10.17713/ajs.v52i2.1385","DOIUrl":null,"url":null,"abstract":"We characterize the high-order coverage accuracy of smoothed and unsmoothed Bayesian bootstrap confidence intervals for population quantiles. Although the original (Rubin 1981) unsmoothed intervals have the same O(n−1/2) coverage error as the standard empirical bootstrap, the smoothed Bayesian bootstrap of Banks (1988) has much smaller O(n−3/2[log(n)]3) coverage error and is exact in special cases, without requiring any smoothing parameter. It automatically removes an error term of order 1/n that other approaches need to explicitly correct for. This motivates further study of the smoothed Bayesian bootstrap in more complex settings and models.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"25 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-order Coverage of Smoothed Bayesian Bootstrap Intervals for Population Quantiles\",\"authors\":\"David M. Kaplan, Lonnie Hofmann\",\"doi\":\"10.17713/ajs.v52i2.1385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the high-order coverage accuracy of smoothed and unsmoothed Bayesian bootstrap confidence intervals for population quantiles. Although the original (Rubin 1981) unsmoothed intervals have the same O(n−1/2) coverage error as the standard empirical bootstrap, the smoothed Bayesian bootstrap of Banks (1988) has much smaller O(n−3/2[log(n)]3) coverage error and is exact in special cases, without requiring any smoothing parameter. It automatically removes an error term of order 1/n that other approaches need to explicitly correct for. This motivates further study of the smoothed Bayesian bootstrap in more complex settings and models.\",\"PeriodicalId\":51761,\"journal\":{\"name\":\"Austrian Journal of Statistics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austrian Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17713/ajs.v52i2.1385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/ajs.v52i2.1385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
High-order Coverage of Smoothed Bayesian Bootstrap Intervals for Population Quantiles
We characterize the high-order coverage accuracy of smoothed and unsmoothed Bayesian bootstrap confidence intervals for population quantiles. Although the original (Rubin 1981) unsmoothed intervals have the same O(n−1/2) coverage error as the standard empirical bootstrap, the smoothed Bayesian bootstrap of Banks (1988) has much smaller O(n−3/2[log(n)]3) coverage error and is exact in special cases, without requiring any smoothing parameter. It automatically removes an error term of order 1/n that other approaches need to explicitly correct for. This motivates further study of the smoothed Bayesian bootstrap in more complex settings and models.
期刊介绍:
The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.