{"title":"鲁棒矩阵中心的一种简单组合算法","authors":"Georg Anegg, Laura Vargas Koch, R. Zenklusen","doi":"10.48550/arXiv.2211.03601","DOIUrl":null,"url":null,"abstract":"Recent progress on robust clustering led to constant-factor approximations for Robust Matroid Center. After a first combinatorial $7$-approximation that is based on a matroid intersection approach, two tight LP-based $3$-approximations were discovered, both relying on the Ellipsoid Method. In this paper, we show how a carefully designed, yet very simple, greedy selection algorithm gives a $5$-approximation. An important ingredient of our approach is a well-chosen use of Rado matroids. This enables us to capture with a single matroid a relaxed version of the original matroid, which, as we show, is amenable to straightforward greedy selections.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"31 1","pages":"96-102"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Combinatorial Algorithm for Robust Matroid Center\",\"authors\":\"Georg Anegg, Laura Vargas Koch, R. Zenklusen\",\"doi\":\"10.48550/arXiv.2211.03601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent progress on robust clustering led to constant-factor approximations for Robust Matroid Center. After a first combinatorial $7$-approximation that is based on a matroid intersection approach, two tight LP-based $3$-approximations were discovered, both relying on the Ellipsoid Method. In this paper, we show how a carefully designed, yet very simple, greedy selection algorithm gives a $5$-approximation. An important ingredient of our approach is a well-chosen use of Rado matroids. This enables us to capture with a single matroid a relaxed version of the original matroid, which, as we show, is amenable to straightforward greedy selections.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"31 1\",\"pages\":\"96-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.03601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.03601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Simple Combinatorial Algorithm for Robust Matroid Center
Recent progress on robust clustering led to constant-factor approximations for Robust Matroid Center. After a first combinatorial $7$-approximation that is based on a matroid intersection approach, two tight LP-based $3$-approximations were discovered, both relying on the Ellipsoid Method. In this paper, we show how a carefully designed, yet very simple, greedy selection algorithm gives a $5$-approximation. An important ingredient of our approach is a well-chosen use of Rado matroids. This enables us to capture with a single matroid a relaxed version of the original matroid, which, as we show, is amenable to straightforward greedy selections.