带内层抛物型对流扩散问题奇异摄动系统的鲁棒计算方法

IF 0.9 Q3 MATHEMATICS, APPLIED
Srinivasan Natesan, Maneesh K. Singh
{"title":"带内层抛物型对流扩散问题奇异摄动系统的鲁棒计算方法","authors":"Srinivasan Natesan,&nbsp;Maneesh K. Singh","doi":"10.1002/cmm4.1146","DOIUrl":null,"url":null,"abstract":"<p>In this article, we present the convergence analysis of an upwind finite difference scheme for singularly perturbed system of parabolic convection-diffusion initial-boundary-value problems with discontinuous convection coefficient and source term. The proposed numerical scheme is constructed by using the implicit-Euler scheme for the time derivative on the uniform mesh, and the upwind finite difference scheme for the spatial derivatives on a layer-resolving piecewise-uniform Shishkin mesh. It is shown that the numerical solution obtained by the proposed scheme converges uniformly with respect to the perturbation parameter. The proposed numerical scheme is of almost first-order (up to a logarithmic factor) in space and first-order in time. Numerical examples are carried out to verify the theoretical results.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1146","citationCount":"1","resultStr":"{\"title\":\"Robust computational method for singularly perturbed system of parabolic convection-diffusion problems with interior layers\",\"authors\":\"Srinivasan Natesan,&nbsp;Maneesh K. Singh\",\"doi\":\"10.1002/cmm4.1146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we present the convergence analysis of an upwind finite difference scheme for singularly perturbed system of parabolic convection-diffusion initial-boundary-value problems with discontinuous convection coefficient and source term. The proposed numerical scheme is constructed by using the implicit-Euler scheme for the time derivative on the uniform mesh, and the upwind finite difference scheme for the spatial derivatives on a layer-resolving piecewise-uniform Shishkin mesh. It is shown that the numerical solution obtained by the proposed scheme converges uniformly with respect to the perturbation parameter. The proposed numerical scheme is of almost first-order (up to a logarithmic factor) in space and first-order in time. Numerical examples are carried out to verify the theoretical results.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmm4.1146\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了具有不连续对流系数和源项的抛物型对流扩散初边值奇摄动系统的迎风有限差分格式的收敛性分析。采用均匀网格上时间导数的隐式欧拉格式和分段均匀Shishkin网格上空间导数的迎风有限差分格式构造了该数值格式。结果表明,该格式得到的数值解相对于扰动参数是一致收敛的。所提出的数值格式在空间上几乎是一阶的(直到一个对数因子),在时间上是一阶的。数值算例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust computational method for singularly perturbed system of parabolic convection-diffusion problems with interior layers

In this article, we present the convergence analysis of an upwind finite difference scheme for singularly perturbed system of parabolic convection-diffusion initial-boundary-value problems with discontinuous convection coefficient and source term. The proposed numerical scheme is constructed by using the implicit-Euler scheme for the time derivative on the uniform mesh, and the upwind finite difference scheme for the spatial derivatives on a layer-resolving piecewise-uniform Shishkin mesh. It is shown that the numerical solution obtained by the proposed scheme converges uniformly with respect to the perturbation parameter. The proposed numerical scheme is of almost first-order (up to a logarithmic factor) in space and first-order in time. Numerical examples are carried out to verify the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信