基于机器学习的印尼语新闻效度检测准确率对比分析

Rachelita Embun Safira, Akhsin Nurlayli
{"title":"基于机器学习的印尼语新闻效度检测准确率对比分析","authors":"Rachelita Embun Safira, Akhsin Nurlayli","doi":"10.21831/jeatech.v4i1.58791","DOIUrl":null,"url":null,"abstract":"Hoax news prediction is required to anticipate the growth of hoax news in social media. This study aimed to determine the best model for predicting whether the news is a hoax or valid based on the dataset taken from Kaggle.com. This study used several data prediction methods: Support Vector Machine (SVM), Random Forest, Logistic Regression, and Naïve Bayes. After the research processes and data testing, the results showed that the best model for predicting hoax news was SVM, which had the highest accuracy, precision, and recall score of the others.","PeriodicalId":8524,"journal":{"name":"Asian Journal of Engineering and Applied Technology","volume":"2005 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of Indonesian news validity detection accuracy using machine learning\",\"authors\":\"Rachelita Embun Safira, Akhsin Nurlayli\",\"doi\":\"10.21831/jeatech.v4i1.58791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hoax news prediction is required to anticipate the growth of hoax news in social media. This study aimed to determine the best model for predicting whether the news is a hoax or valid based on the dataset taken from Kaggle.com. This study used several data prediction methods: Support Vector Machine (SVM), Random Forest, Logistic Regression, and Naïve Bayes. After the research processes and data testing, the results showed that the best model for predicting hoax news was SVM, which had the highest accuracy, precision, and recall score of the others.\",\"PeriodicalId\":8524,\"journal\":{\"name\":\"Asian Journal of Engineering and Applied Technology\",\"volume\":\"2005 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Engineering and Applied Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21831/jeatech.v4i1.58791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Engineering and Applied Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21831/jeatech.v4i1.58791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

恶作剧新闻预测需要预测社交媒体上恶作剧新闻的增长。这项研究旨在根据Kaggle.com上的数据集,确定预测新闻是骗局还是有效的最佳模型。本研究使用了几种数据预测方法:支持向量机(SVM)、随机森林、逻辑回归和Naïve贝叶斯。经过研究过程和数据检验,结果表明支持向量机是预测恶作剧新闻的最佳模型,其准确率、精密度和召回率得分均高于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of Indonesian news validity detection accuracy using machine learning
Hoax news prediction is required to anticipate the growth of hoax news in social media. This study aimed to determine the best model for predicting whether the news is a hoax or valid based on the dataset taken from Kaggle.com. This study used several data prediction methods: Support Vector Machine (SVM), Random Forest, Logistic Regression, and Naïve Bayes. After the research processes and data testing, the results showed that the best model for predicting hoax news was SVM, which had the highest accuracy, precision, and recall score of the others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信