{"title":"系统发育组合学的最新进展","authors":"A. Dress","doi":"10.1142/9781848161092_0001","DOIUrl":null,"url":null,"abstract":"of D is an R-tree. (ii) There exists a tree (V,E) whose vertex set V contains X, and an edge weighting ` : E → R that assigns a positive length `(e) to each edge e in E, such that D is the restriction of X to the shortest-path metric induced on V. (iii) There exists a map w : S(X) → R≥0 from the set S(X) of all bi-partitions or splits of X into the set R≥0 of non-negative real numbers such that, given any two splits S = {A,B} and S′ = {A′, B′} in S(X) with w(S), w(S′) 6= 0, at least one of the four intersections A ∩A′, B ∩A′, A ∩B′, and B ∩B′ is empty and D(x, y) = ∑ S∈S(X:x↔y) w(S) holds where S(X : x↔y) denotes the set of splits S = {A,B} ∈ S(X) that separate x and y. (iv) D(x, y)+D(u, v) ≤ max ( D(x, u)+D(y, v), D(x, v)+D(y, u) ) holds for all x, y, u, v ∈ X","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"6 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress in Phylogenetic Combinatorics\",\"authors\":\"A. Dress\",\"doi\":\"10.1142/9781848161092_0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"of D is an R-tree. (ii) There exists a tree (V,E) whose vertex set V contains X, and an edge weighting ` : E → R that assigns a positive length `(e) to each edge e in E, such that D is the restriction of X to the shortest-path metric induced on V. (iii) There exists a map w : S(X) → R≥0 from the set S(X) of all bi-partitions or splits of X into the set R≥0 of non-negative real numbers such that, given any two splits S = {A,B} and S′ = {A′, B′} in S(X) with w(S), w(S′) 6= 0, at least one of the four intersections A ∩A′, B ∩A′, A ∩B′, and B ∩B′ is empty and D(x, y) = ∑ S∈S(X:x↔y) w(S) holds where S(X : x↔y) denotes the set of splits S = {A,B} ∈ S(X) that separate x and y. (iv) D(x, y)+D(u, v) ≤ max ( D(x, u)+D(y, v), D(x, v)+D(y, u) ) holds for all x, y, u, v ∈ X\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"6 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781848161092_0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848161092_0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
(D)是一个r树。(ii)存在一棵树(V,E),其顶点集V包含X,并且存在一个边权':E→R,该边权':E→R赋予E中的每条边E一个正长度' (E),使得D是X对V诱导的最短路径度量的约束。(iii)存在一个映射w:S (X)→R≥0集合S (X)的所有bi-partitions或分裂X的非负实数集R≥0的,给定的任意两个分裂S = {A、B}和S ' ={一个“B”}S (X)和w (S), w(年代”)6 = 0,至少有一个的四个十字路口∩“,B∩,∩B, B和B∩”是空的和D (X, y) =∑∈年代(X, X↔y) w (S)认为,S (X): X↔y)表示的集合分裂S = {A、B}∈(X),独立的X和y。(iv) D (X, y) + D (u, v)≤马克斯(D (X, u) + D (y, v)、D (X, v) + D (y, u))拥有对所有的X, y, u, v∈X
of D is an R-tree. (ii) There exists a tree (V,E) whose vertex set V contains X, and an edge weighting ` : E → R that assigns a positive length `(e) to each edge e in E, such that D is the restriction of X to the shortest-path metric induced on V. (iii) There exists a map w : S(X) → R≥0 from the set S(X) of all bi-partitions or splits of X into the set R≥0 of non-negative real numbers such that, given any two splits S = {A,B} and S′ = {A′, B′} in S(X) with w(S), w(S′) 6= 0, at least one of the four intersections A ∩A′, B ∩A′, A ∩B′, and B ∩B′ is empty and D(x, y) = ∑ S∈S(X:x↔y) w(S) holds where S(X : x↔y) denotes the set of splits S = {A,B} ∈ S(X) that separate x and y. (iv) D(x, y)+D(u, v) ≤ max ( D(x, u)+D(y, v), D(x, v)+D(y, u) ) holds for all x, y, u, v ∈ X