一个健壮的网络安全主题分类工具

Elijah Pelofske, L. Liebrock, V. Urias
{"title":"一个健壮的网络安全主题分类工具","authors":"Elijah Pelofske, L. Liebrock, V. Urias","doi":"10.5121/ijnsa.2022.14101","DOIUrl":null,"url":null,"abstract":"In this research, we use user defined labels from three internet text sources (Reddit, StackExchange, Arxiv) to train 21 different machine learning models for the topic classification task of detecting cybersecurity discussions in natural English text. We analyze the false positive and false negative rates of each of the 21 model’s in cross validation experiments. Then we present a Cybersecurity Topic Classification (CTC) tool, which takes the majority vote of the 21 trained machine learning models as the decision mechanism for detecting cybersecurity related text. We also show that the majority vote mechanism of the CTC tool provides lower false negative and false positive rates on average than any of the 21 individual models. We show that the CTC tool is scalable to the hundreds of thousands of documents with a wall clock time on the order of hours.","PeriodicalId":93303,"journal":{"name":"International journal of network security & its applications","volume":"347 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Robust Cybersecurity Topic Classification Tool\",\"authors\":\"Elijah Pelofske, L. Liebrock, V. Urias\",\"doi\":\"10.5121/ijnsa.2022.14101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we use user defined labels from three internet text sources (Reddit, StackExchange, Arxiv) to train 21 different machine learning models for the topic classification task of detecting cybersecurity discussions in natural English text. We analyze the false positive and false negative rates of each of the 21 model’s in cross validation experiments. Then we present a Cybersecurity Topic Classification (CTC) tool, which takes the majority vote of the 21 trained machine learning models as the decision mechanism for detecting cybersecurity related text. We also show that the majority vote mechanism of the CTC tool provides lower false negative and false positive rates on average than any of the 21 individual models. We show that the CTC tool is scalable to the hundreds of thousands of documents with a wall clock time on the order of hours.\",\"PeriodicalId\":93303,\"journal\":{\"name\":\"International journal of network security & its applications\",\"volume\":\"347 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of network security & its applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijnsa.2022.14101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of network security & its applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijnsa.2022.14101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项研究中,我们使用来自三个互联网文本源(Reddit, StackExchange, Arxiv)的用户定义标签来训练21种不同的机器学习模型,用于检测自然英语文本中的网络安全讨论的主题分类任务。我们在交叉验证实验中分析了21个模型的假阳性和假阴性率。然后,我们提出了一个网络安全主题分类(CTC)工具,该工具将21个训练好的机器学习模型的多数投票作为检测网络安全相关文本的决策机制。我们还表明,CTC工具的多数投票机制平均提供的假阴性和假阳性率低于21个单独模型中的任何一个。我们展示了CTC工具可以扩展到成千上万的文档,时钟时间在几个小时左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Cybersecurity Topic Classification Tool
In this research, we use user defined labels from three internet text sources (Reddit, StackExchange, Arxiv) to train 21 different machine learning models for the topic classification task of detecting cybersecurity discussions in natural English text. We analyze the false positive and false negative rates of each of the 21 model’s in cross validation experiments. Then we present a Cybersecurity Topic Classification (CTC) tool, which takes the majority vote of the 21 trained machine learning models as the decision mechanism for detecting cybersecurity related text. We also show that the majority vote mechanism of the CTC tool provides lower false negative and false positive rates on average than any of the 21 individual models. We show that the CTC tool is scalable to the hundreds of thousands of documents with a wall clock time on the order of hours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信