带有颜色的人工情绪检测的反向传播神经网络模型

Min-Feng Lee, Guey-Shya Chen
{"title":"带有颜色的人工情绪检测的反向传播神经网络模型","authors":"Min-Feng Lee, Guey-Shya Chen","doi":"10.1109/ICAWST.2013.6765479","DOIUrl":null,"url":null,"abstract":"Nowadays, emotion is leaded into a key position of human behavior clue, and hence it should be included within the sensible model when an intelligent system aims to simulate or forecast human responses. This research utilizes backpropagation one of neural network model to build the emotion detecting mechanism. This research integrates and manipulates the Thayer's emotion mode, Fuzzy Cognitive Maps and color theory into the backpropagation neural network model for an innovative emotion detecting system. This paper uses 100 data in four emotion groups to train the weight in the neural network and use 300 data to verify the accuracy in this system. The result reveals that backpropagation neural network can be effective estimation the emotion by feedback color from human. For the further research, colors will not the only human behavior clues, even more than all the factors from human interaction.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"176 1","pages":"433-438"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Backpropagation neural network model for detecting artificial emotions with color\",\"authors\":\"Min-Feng Lee, Guey-Shya Chen\",\"doi\":\"10.1109/ICAWST.2013.6765479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, emotion is leaded into a key position of human behavior clue, and hence it should be included within the sensible model when an intelligent system aims to simulate or forecast human responses. This research utilizes backpropagation one of neural network model to build the emotion detecting mechanism. This research integrates and manipulates the Thayer's emotion mode, Fuzzy Cognitive Maps and color theory into the backpropagation neural network model for an innovative emotion detecting system. This paper uses 100 data in four emotion groups to train the weight in the neural network and use 300 data to verify the accuracy in this system. The result reveals that backpropagation neural network can be effective estimation the emotion by feedback color from human. For the further research, colors will not the only human behavior clues, even more than all the factors from human interaction.\",\"PeriodicalId\":68697,\"journal\":{\"name\":\"炎黄地理\",\"volume\":\"176 1\",\"pages\":\"433-438\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"炎黄地理\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2013.6765479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

如今,情感被引入到人类行为线索的关键位置,因此,当智能系统旨在模拟或预测人类的反应时,应该将情感纳入到感知模型中。本研究利用神经网络模型中的反向传播模型来构建情感检测机制。本研究将Thayer的情绪模式、模糊认知地图和色彩理论整合并运用到反向传播神经网络模型中,构建了一种创新的情绪检测系统。本文使用四个情绪组的100个数据来训练神经网络中的权重,并使用300个数据来验证该系统的准确性。结果表明,反向传播神经网络可以有效地根据人的反馈颜色对情绪进行估计。对于进一步的研究,颜色将不再是人类行为的唯一线索,甚至超过所有来自人类互动的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Backpropagation neural network model for detecting artificial emotions with color
Nowadays, emotion is leaded into a key position of human behavior clue, and hence it should be included within the sensible model when an intelligent system aims to simulate or forecast human responses. This research utilizes backpropagation one of neural network model to build the emotion detecting mechanism. This research integrates and manipulates the Thayer's emotion mode, Fuzzy Cognitive Maps and color theory into the backpropagation neural network model for an innovative emotion detecting system. This paper uses 100 data in four emotion groups to train the weight in the neural network and use 300 data to verify the accuracy in this system. The result reveals that backpropagation neural network can be effective estimation the emotion by feedback color from human. For the further research, colors will not the only human behavior clues, even more than all the factors from human interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
784
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信