{"title":"ε-近似完全不变性","authors":"G. García","doi":"10.4995/agt.2022.16641","DOIUrl":null,"url":null,"abstract":"In the present paper we introduce a generalization of the complete invariance property (CIP) for metric spaces, which we will call the ε-approximated complete invariance property (ε-ACIP). For our goals, we will use the so called degree of nondensifiability (DND) which, roughly speaking, measures (in the specified sense) the distance from a bounded metric space to its class of Peano continua. Our main result relates the ε-ACIP with the DND and, in particular, proves that a densifiable metric space has the ε-ACIP for each ε>0. Also, some essentials differences between the CIP and the ε-ACIP are shown.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"65 3 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ε-approximated complete invariance property\",\"authors\":\"G. García\",\"doi\":\"10.4995/agt.2022.16641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper we introduce a generalization of the complete invariance property (CIP) for metric spaces, which we will call the ε-approximated complete invariance property (ε-ACIP). For our goals, we will use the so called degree of nondensifiability (DND) which, roughly speaking, measures (in the specified sense) the distance from a bounded metric space to its class of Peano continua. Our main result relates the ε-ACIP with the DND and, in particular, proves that a densifiable metric space has the ε-ACIP for each ε>0. Also, some essentials differences between the CIP and the ε-ACIP are shown.\",\"PeriodicalId\":8046,\"journal\":{\"name\":\"Applied general topology\",\"volume\":\"65 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied general topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/agt.2022.16641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2022.16641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In the present paper we introduce a generalization of the complete invariance property (CIP) for metric spaces, which we will call the ε-approximated complete invariance property (ε-ACIP). For our goals, we will use the so called degree of nondensifiability (DND) which, roughly speaking, measures (in the specified sense) the distance from a bounded metric space to its class of Peano continua. Our main result relates the ε-ACIP with the DND and, in particular, proves that a densifiable metric space has the ε-ACIP for each ε>0. Also, some essentials differences between the CIP and the ε-ACIP are shown.
期刊介绍:
The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.