最短Bezier曲线的粒子群算法

Shang Gao, Zaiyue Zhang, C. Cao
{"title":"最短Bezier曲线的粒子群算法","authors":"Shang Gao, Zaiyue Zhang, C. Cao","doi":"10.1109/IWISA.2009.5073001","DOIUrl":null,"url":null,"abstract":"Bezier curves have become fundamental tools in many challenging and varied applications, ranging from computer- aided geometric design to generic object shape descriptors. Bezier curves have wide applications because they are easy to compute and very stable. Based on analysis of Bezier curve, the problem of the shortest Bezier curve is discussed in this paper. Furthermore, the particle swarm algorithm for this problem is presented. At last, examples are given.","PeriodicalId":6327,"journal":{"name":"2009 International Workshop on Intelligent Systems and Applications","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Particle Swarm Algorithm for the Shortest Bezier Curve\",\"authors\":\"Shang Gao, Zaiyue Zhang, C. Cao\",\"doi\":\"10.1109/IWISA.2009.5073001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bezier curves have become fundamental tools in many challenging and varied applications, ranging from computer- aided geometric design to generic object shape descriptors. Bezier curves have wide applications because they are easy to compute and very stable. Based on analysis of Bezier curve, the problem of the shortest Bezier curve is discussed in this paper. Furthermore, the particle swarm algorithm for this problem is presented. At last, examples are given.\",\"PeriodicalId\":6327,\"journal\":{\"name\":\"2009 International Workshop on Intelligent Systems and Applications\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2009.5073001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2009.5073001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

贝塞尔曲线已成为许多具有挑战性和各种应用的基本工具,从计算机辅助几何设计到一般物体形状描述符。贝塞尔曲线因其易于计算和非常稳定而具有广泛的应用。本文在分析Bezier曲线的基础上,讨论了最短Bezier曲线问题。在此基础上,提出了求解该问题的粒子群算法。最后给出了实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Swarm Algorithm for the Shortest Bezier Curve
Bezier curves have become fundamental tools in many challenging and varied applications, ranging from computer- aided geometric design to generic object shape descriptors. Bezier curves have wide applications because they are easy to compute and very stable. Based on analysis of Bezier curve, the problem of the shortest Bezier curve is discussed in this paper. Furthermore, the particle swarm algorithm for this problem is presented. At last, examples are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信