C. Merkwirth, Jochen Bröcker, M. Ogorzałek, J. Wichard
{"title":"有限迭代DT-CNN -新的设计和工作原理","authors":"C. Merkwirth, Jochen Bröcker, M. Ogorzałek, J. Wichard","doi":"10.1109/ISCAS.2004.1329696","DOIUrl":null,"url":null,"abstract":"In this paper we propose to use the discrete-time cellular neural network (DT-CNN) in a finite iterate mode. In such a mode of operation no special requirements on template stability properties are needed. We propose a constructive back propagation based algorithm for template design. For a given number of iterations we can find optimal sequence of templates for a given problem to be solved. Our novel approach is demonstrated by a design of a digit recognition DT-CNN.","PeriodicalId":6445,"journal":{"name":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","volume":"1 1","pages":"V-V"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Finite iteration DT-CNN - new design and operating principles\",\"authors\":\"C. Merkwirth, Jochen Bröcker, M. Ogorzałek, J. Wichard\",\"doi\":\"10.1109/ISCAS.2004.1329696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose to use the discrete-time cellular neural network (DT-CNN) in a finite iterate mode. In such a mode of operation no special requirements on template stability properties are needed. We propose a constructive back propagation based algorithm for template design. For a given number of iterations we can find optimal sequence of templates for a given problem to be solved. Our novel approach is demonstrated by a design of a digit recognition DT-CNN.\",\"PeriodicalId\":6445,\"journal\":{\"name\":\"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)\",\"volume\":\"1 1\",\"pages\":\"V-V\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2004.1329696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2004.1329696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite iteration DT-CNN - new design and operating principles
In this paper we propose to use the discrete-time cellular neural network (DT-CNN) in a finite iterate mode. In such a mode of operation no special requirements on template stability properties are needed. We propose a constructive back propagation based algorithm for template design. For a given number of iterations we can find optimal sequence of templates for a given problem to be solved. Our novel approach is demonstrated by a design of a digit recognition DT-CNN.