718Plus镍基高温合金高温疲劳行为及断裂特征

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
P. Zhao, Chongxiang Di, Tong Zhang, Minqing Wang
{"title":"718Plus镍基高温合金高温疲劳行为及断裂特征","authors":"P. Zhao, Chongxiang Di, Tong Zhang, Minqing Wang","doi":"10.1080/10667857.2023.2174797","DOIUrl":null,"url":null,"abstract":"ABSTRACT The paper describes high cycle rotational bending fatigue (HCF) performance and fracture characteristics of 718Plus alloy at 600°C and 700°C, where the relationship between maximum cyclic stress (S) and fatigue cycles (N) at 600°C and 700°C is explored. We drew S-N curves, and established mathematical model, with simulating S-N curve function. The crack initiation of smooth specimens focus on the surface or subsurface, where the stress concentration caused by inclusions, carbides and microstructure defects, leading to tearing, and inclusion is the main form of crack initiation. In addition, the high cycle fatigue life of 718Plus alloy is greatly affected by the microstructure defects. According to the analysis of high cycle fatigue fracture morphology, at 700°C, the alloy fatigue crack growth is faster, and the number of secondary cracks is more than 600°C. Thus, the growth behaviour is greatly affected by temperature.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatigue behavior and fracture characteristics of 718Plus nickel-based superalloy at high temperature\",\"authors\":\"P. Zhao, Chongxiang Di, Tong Zhang, Minqing Wang\",\"doi\":\"10.1080/10667857.2023.2174797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The paper describes high cycle rotational bending fatigue (HCF) performance and fracture characteristics of 718Plus alloy at 600°C and 700°C, where the relationship between maximum cyclic stress (S) and fatigue cycles (N) at 600°C and 700°C is explored. We drew S-N curves, and established mathematical model, with simulating S-N curve function. The crack initiation of smooth specimens focus on the surface or subsurface, where the stress concentration caused by inclusions, carbides and microstructure defects, leading to tearing, and inclusion is the main form of crack initiation. In addition, the high cycle fatigue life of 718Plus alloy is greatly affected by the microstructure defects. According to the analysis of high cycle fatigue fracture morphology, at 700°C, the alloy fatigue crack growth is faster, and the number of secondary cracks is more than 600°C. Thus, the growth behaviour is greatly affected by temperature.\",\"PeriodicalId\":18270,\"journal\":{\"name\":\"Materials Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10667857.2023.2174797\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2023.2174797","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fatigue behavior and fracture characteristics of 718Plus nickel-based superalloy at high temperature
ABSTRACT The paper describes high cycle rotational bending fatigue (HCF) performance and fracture characteristics of 718Plus alloy at 600°C and 700°C, where the relationship between maximum cyclic stress (S) and fatigue cycles (N) at 600°C and 700°C is explored. We drew S-N curves, and established mathematical model, with simulating S-N curve function. The crack initiation of smooth specimens focus on the surface or subsurface, where the stress concentration caused by inclusions, carbides and microstructure defects, leading to tearing, and inclusion is the main form of crack initiation. In addition, the high cycle fatigue life of 718Plus alloy is greatly affected by the microstructure defects. According to the analysis of high cycle fatigue fracture morphology, at 700°C, the alloy fatigue crack growth is faster, and the number of secondary cracks is more than 600°C. Thus, the growth behaviour is greatly affected by temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Technology
Materials Technology 工程技术-材料科学:综合
CiteScore
6.00
自引率
9.70%
发文量
105
审稿时长
8.7 months
期刊介绍: Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信