阶限未知的多元多项式的符号-数值稀疏插值算法

Dai Numahata, Hiroshi Sekigawa
{"title":"阶限未知的多元多项式的符号-数值稀疏插值算法","authors":"Dai Numahata, Hiroshi Sekigawa","doi":"10.1145/3096730.3096734","DOIUrl":null,"url":null,"abstract":"We consider the problem of sparse interpolation of a multivariate black-box polynomial in floatingpoint arithmetic. More specifically, we assume that we are given a black-box polynomial <i>f</i> (<i>x</i><sub>1</sub>,...<i>x</i><sub>n</sub>) = Σ<sup><i>t</i></sup><sub><i>j</i>=1</sub> <i>c</i><sub><i>j</i></sub><i>x</i><sub>1</sub><sup><i>d</i><sub><i>j</i>, 1</sub></sup> ...<i>x</i><sub><i>n</i></sub><sup><i>d</i><sub><i>j</i>, n</sub></sup> ∈ C[<i>x</i><sub>1</sub>,...,<i>x</i><sub><i>n</i></sub>] (<i>c<sub>j</sub></i> ≠ 0)and the number of terms <i>t</i>, and that we can evaluate the value of <i>f</i> (<i>x<sup>1</sup>,...,x<sub>n</sub>)</i> at any point in C<sup><i>n</i></sup> in floating-point arithmetic. The problem is to find the coefficients <i>c<sub>1</sub></i>, ..., <i>c<sub>t</sub></i> and the exponents <i>d<sub>1,1,</sub>..., d<sub>t,n</sub></i>. We propose an efficient algorithm to solve the problem.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"2 1","pages":"18-20"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An algorithm for symbolic-numeric sparse interpolation of multivariate polynomials whose degree bounds are unknown\",\"authors\":\"Dai Numahata, Hiroshi Sekigawa\",\"doi\":\"10.1145/3096730.3096734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of sparse interpolation of a multivariate black-box polynomial in floatingpoint arithmetic. More specifically, we assume that we are given a black-box polynomial <i>f</i> (<i>x</i><sub>1</sub>,...<i>x</i><sub>n</sub>) = Σ<sup><i>t</i></sup><sub><i>j</i>=1</sub> <i>c</i><sub><i>j</i></sub><i>x</i><sub>1</sub><sup><i>d</i><sub><i>j</i>, 1</sub></sup> ...<i>x</i><sub><i>n</i></sub><sup><i>d</i><sub><i>j</i>, n</sub></sup> ∈ C[<i>x</i><sub>1</sub>,...,<i>x</i><sub><i>n</i></sub>] (<i>c<sub>j</sub></i> ≠ 0)and the number of terms <i>t</i>, and that we can evaluate the value of <i>f</i> (<i>x<sup>1</sup>,...,x<sub>n</sub>)</i> at any point in C<sup><i>n</i></sup> in floating-point arithmetic. The problem is to find the coefficients <i>c<sub>1</sub></i>, ..., <i>c<sub>t</sub></i> and the exponents <i>d<sub>1,1,</sub>..., d<sub>t,n</sub></i>. We propose an efficient algorithm to solve the problem.\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"2 1\",\"pages\":\"18-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3096730.3096734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3096730.3096734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究浮点算法中多元黑盒多项式的稀疏插值问题。更具体地说,我们假设给定一个黑箱多项式f (x1,…xn) = Σtj=1 cjx1dj, 1…xndj, n∈C[x1,…],xn] (cj≠0)和项数t,我们可以用浮点运算求出f (x1,…,xn)在Cn上任意点的值。问题是求出系数c1,…, ct和指数d1,1,…, dt, n。我们提出了一个有效的算法来解决这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algorithm for symbolic-numeric sparse interpolation of multivariate polynomials whose degree bounds are unknown
We consider the problem of sparse interpolation of a multivariate black-box polynomial in floatingpoint arithmetic. More specifically, we assume that we are given a black-box polynomial f (x1,...xn) = Σtj=1 cjx1dj, 1 ...xndj, n ∈ C[x1,...,xn] (cj ≠ 0)and the number of terms t, and that we can evaluate the value of f (x1,...,xn) at any point in Cn in floating-point arithmetic. The problem is to find the coefficients c1, ..., ct and the exponents d1,1,..., dt,n. We propose an efficient algorithm to solve the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信