基于生成对抗网络的多参数磁共振图像合成

Christoph Haarburger, N. Horst, D. Truhn, Mirjam Broeckmann, S. Schrading, C. Kuhl, D. Merhof
{"title":"基于生成对抗网络的多参数磁共振图像合成","authors":"Christoph Haarburger, N. Horst, D. Truhn, Mirjam Broeckmann, S. Schrading, C. Kuhl, D. Merhof","doi":"10.2312/VCBM.20191226","DOIUrl":null,"url":null,"abstract":"Generative adversarial networks have been shown to alleviate the problem of limited training data for supervised learning problems in medical image computing. However, most generative models for medical images focus on image-to-image translation rather than de novo image synthesis. In many clinical applications, image acquisition is multiparametric, i.e. includes contrast-enchanced or diffusion-weighted imaging. We present a generative adversarial network that synthesizes a sequence of temporally consistent contrast-enhanced breast MR image patches. Performance is evaluated quantitatively using the Fréchet Inception Distance, achieving a minimum FID of 21.03. Moreover, a qualitative human reader test shows that even a radiologist cannot differentiate between real and fake images easily. CCS Concepts • Computing methodologies → Modeling methodologies;","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"1 1","pages":"11-15"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Multiparametric Magnetic Resonance Image Synthesis using Generative Adversarial Networks\",\"authors\":\"Christoph Haarburger, N. Horst, D. Truhn, Mirjam Broeckmann, S. Schrading, C. Kuhl, D. Merhof\",\"doi\":\"10.2312/VCBM.20191226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative adversarial networks have been shown to alleviate the problem of limited training data for supervised learning problems in medical image computing. However, most generative models for medical images focus on image-to-image translation rather than de novo image synthesis. In many clinical applications, image acquisition is multiparametric, i.e. includes contrast-enchanced or diffusion-weighted imaging. We present a generative adversarial network that synthesizes a sequence of temporally consistent contrast-enhanced breast MR image patches. Performance is evaluated quantitatively using the Fréchet Inception Distance, achieving a minimum FID of 21.03. Moreover, a qualitative human reader test shows that even a radiologist cannot differentiate between real and fake images easily. CCS Concepts • Computing methodologies → Modeling methodologies;\",\"PeriodicalId\":88872,\"journal\":{\"name\":\"Eurographics Workshop on Visual Computing for Biomedicine\",\"volume\":\"1 1\",\"pages\":\"11-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Workshop on Visual Computing for Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/VCBM.20191226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/VCBM.20191226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

生成对抗网络已被证明可以缓解医学图像计算中监督学习问题中训练数据有限的问题。然而,大多数医学图像生成模型侧重于图像到图像的转换,而不是从头合成图像。在许多临床应用中,图像采集是多参数的,即包括对比度增强或弥散加权成像。我们提出了一个生成对抗网络,该网络合成了一系列时间一致的对比度增强乳房MR图像补丁。使用fr起始距离定量评估性能,达到最小FID 21.03。此外,一项定性的人类读者测试表明,即使是放射科医生也不能轻易区分真实和虚假的图像。•计算方法→建模方法;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiparametric Magnetic Resonance Image Synthesis using Generative Adversarial Networks
Generative adversarial networks have been shown to alleviate the problem of limited training data for supervised learning problems in medical image computing. However, most generative models for medical images focus on image-to-image translation rather than de novo image synthesis. In many clinical applications, image acquisition is multiparametric, i.e. includes contrast-enchanced or diffusion-weighted imaging. We present a generative adversarial network that synthesizes a sequence of temporally consistent contrast-enhanced breast MR image patches. Performance is evaluated quantitatively using the Fréchet Inception Distance, achieving a minimum FID of 21.03. Moreover, a qualitative human reader test shows that even a radiologist cannot differentiate between real and fake images easily. CCS Concepts • Computing methodologies → Modeling methodologies;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信