Yuchen Yang, Xinyu Qi, Zhenming Wang, Jianming Liu, N. Zhao
{"title":"基于平行自适应笛卡尔网格的高雷诺数湍流浸入边界法","authors":"Yuchen Yang, Xinyu Qi, Zhenming Wang, Jianming Liu, N. Zhao","doi":"10.1080/10618562.2022.2108807","DOIUrl":null,"url":null,"abstract":"In this paper, a set of parallelised adaptive hierarchical Cartesian-based immersed boundary methodology is developed for high Reynolds number compressible flow. First, a robust and efficient grid generation method based on the separation axis theorem for arbitrary geometry is presented for automatic Cartesian grid generation. Second, an immersed boundary method (IBM) is presented coupling with wall model for high Reynolds number flow. Third, a parallel strategy is implemented and special treatment is proposed to guarantee large-scale computing. Finally, cell-based adaptive mesh refinement (AMR) technology is used to capture fluid phenomena under different regimes including but not limited to shock waves and vortices. The overall performance of the methodology is tested through a wide range of regimes including transonic and supersonic flow with high Reynolds number in both two and three dimensions. Results are in good agreement with reference data and indicate the capability and robustness of the present methodology.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"1 1","pages":"319 - 341"},"PeriodicalIF":1.1000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Immersed Boundary Method Based on Parallel Adaptive Cartesian Grids for High Reynolds Number Turbulent Flow\",\"authors\":\"Yuchen Yang, Xinyu Qi, Zhenming Wang, Jianming Liu, N. Zhao\",\"doi\":\"10.1080/10618562.2022.2108807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a set of parallelised adaptive hierarchical Cartesian-based immersed boundary methodology is developed for high Reynolds number compressible flow. First, a robust and efficient grid generation method based on the separation axis theorem for arbitrary geometry is presented for automatic Cartesian grid generation. Second, an immersed boundary method (IBM) is presented coupling with wall model for high Reynolds number flow. Third, a parallel strategy is implemented and special treatment is proposed to guarantee large-scale computing. Finally, cell-based adaptive mesh refinement (AMR) technology is used to capture fluid phenomena under different regimes including but not limited to shock waves and vortices. The overall performance of the methodology is tested through a wide range of regimes including transonic and supersonic flow with high Reynolds number in both two and three dimensions. Results are in good agreement with reference data and indicate the capability and robustness of the present methodology.\",\"PeriodicalId\":56288,\"journal\":{\"name\":\"International Journal of Computational Fluid Dynamics\",\"volume\":\"1 1\",\"pages\":\"319 - 341\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10618562.2022.2108807\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2022.2108807","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
An Immersed Boundary Method Based on Parallel Adaptive Cartesian Grids for High Reynolds Number Turbulent Flow
In this paper, a set of parallelised adaptive hierarchical Cartesian-based immersed boundary methodology is developed for high Reynolds number compressible flow. First, a robust and efficient grid generation method based on the separation axis theorem for arbitrary geometry is presented for automatic Cartesian grid generation. Second, an immersed boundary method (IBM) is presented coupling with wall model for high Reynolds number flow. Third, a parallel strategy is implemented and special treatment is proposed to guarantee large-scale computing. Finally, cell-based adaptive mesh refinement (AMR) technology is used to capture fluid phenomena under different regimes including but not limited to shock waves and vortices. The overall performance of the methodology is tested through a wide range of regimes including transonic and supersonic flow with high Reynolds number in both two and three dimensions. Results are in good agreement with reference data and indicate the capability and robustness of the present methodology.
期刊介绍:
The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields.
The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.