图的广义上哈密顿数的上界

IF 0.5 Q3 MATHEMATICS
Martin Dz'urik
{"title":"图的广义上哈密顿数的上界","authors":"Martin Dz'urik","doi":"10.5817/am2021-5-299","DOIUrl":null,"url":null,"abstract":"In this article we study graphs with ordering of vertices, we define a generalization called a pseudoordering, and for a graph $H$ we define the $H$-Hamiltonian number of a graph $G$. We will show that this concept is a generalization of both the Hamiltonian number and the traceable number. We will prove equivalent characteristics of an isomorphism of graphs $G$ and $H$ using $H$-Hamiltonian number of $G$. Furthermore, we will show that for a fixed number of vertices, each path has a maximal upper $H$-Hamiltonian number, which is a generalization of the same claim for upper Hamiltonian numbers and upper traceable numbers. Finally we will show that for every connected graph $H$ only paths have maximal $H$-Hamiltonian number.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"24 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An upper bound of a generalized upper Hamiltonian number of a graph\",\"authors\":\"Martin Dz'urik\",\"doi\":\"10.5817/am2021-5-299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study graphs with ordering of vertices, we define a generalization called a pseudoordering, and for a graph $H$ we define the $H$-Hamiltonian number of a graph $G$. We will show that this concept is a generalization of both the Hamiltonian number and the traceable number. We will prove equivalent characteristics of an isomorphism of graphs $G$ and $H$ using $H$-Hamiltonian number of $G$. Furthermore, we will show that for a fixed number of vertices, each path has a maximal upper $H$-Hamiltonian number, which is a generalization of the same claim for upper Hamiltonian numbers and upper traceable numbers. Finally we will show that for every connected graph $H$ only paths have maximal $H$-Hamiltonian number.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2021-5-299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2021-5-299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究具有顶点排序的图,我们定义了一种称为伪排序的泛化,对于图$H$,我们定义了图$G$的$H$-哈密顿数。我们将证明这个概念是哈密顿数和可追溯数的推广。利用图$G$的$H$-哈密顿数证明了图$G$和$H$同构的等价特征。此外,我们将证明,对于固定数量的顶点,每个路径都有一个最大上$H$-哈密顿数,这是对上哈密顿数和上可追溯数相同声明的推广。最后我们将证明对于每一个连通图$H$,只有路径具有最大$H$-哈密顿数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An upper bound of a generalized upper Hamiltonian number of a graph
In this article we study graphs with ordering of vertices, we define a generalization called a pseudoordering, and for a graph $H$ we define the $H$-Hamiltonian number of a graph $G$. We will show that this concept is a generalization of both the Hamiltonian number and the traceable number. We will prove equivalent characteristics of an isomorphism of graphs $G$ and $H$ using $H$-Hamiltonian number of $G$. Furthermore, we will show that for a fixed number of vertices, each path has a maximal upper $H$-Hamiltonian number, which is a generalization of the same claim for upper Hamiltonian numbers and upper traceable numbers. Finally we will show that for every connected graph $H$ only paths have maximal $H$-Hamiltonian number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信