{"title":"用分子模型研究细菌群体感应中的内酯和硫代内酯抑制剂","authors":"Marawan Ahmed, S. Bird, Feng Wang, E. Palombo","doi":"10.5539/IJC.V5N4P9","DOIUrl":null,"url":null,"abstract":"In the present study, the origin of the anti-quorum sensing (QS) activities of several members of a recently synthesized and in vitro tested class of lactone and thiolactone based inhibitors were computationally investigated. Docking and molecular dynamic (MD) simulations and binding free energy calculations were carried out to reveal the exact binding and inhibitory profiles of these compounds. The higher in vitro activity of the lactone series relative to their thiolactone isosteres was verified based on estimating the binding energies, the docking scores and monitoring the stability of the complexes produced in the MD simulations. The strong electrostatic contribution to the binding energies may be responsible for the higher inhibitory activity of the lactone with respect to the thiolactone series. The results of this study help to understand the anti-QS properties of lactone-based inhibitors and provide important information that may assist in the synthesis of novel QS inhibitors.","PeriodicalId":8447,"journal":{"name":"arXiv: Biomolecules","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"In silico investigation of lactone and thiolactone inhibitors in bacterial quorum sensing using molecular modeling\",\"authors\":\"Marawan Ahmed, S. Bird, Feng Wang, E. Palombo\",\"doi\":\"10.5539/IJC.V5N4P9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, the origin of the anti-quorum sensing (QS) activities of several members of a recently synthesized and in vitro tested class of lactone and thiolactone based inhibitors were computationally investigated. Docking and molecular dynamic (MD) simulations and binding free energy calculations were carried out to reveal the exact binding and inhibitory profiles of these compounds. The higher in vitro activity of the lactone series relative to their thiolactone isosteres was verified based on estimating the binding energies, the docking scores and monitoring the stability of the complexes produced in the MD simulations. The strong electrostatic contribution to the binding energies may be responsible for the higher inhibitory activity of the lactone with respect to the thiolactone series. The results of this study help to understand the anti-QS properties of lactone-based inhibitors and provide important information that may assist in the synthesis of novel QS inhibitors.\",\"PeriodicalId\":8447,\"journal\":{\"name\":\"arXiv: Biomolecules\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/IJC.V5N4P9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/IJC.V5N4P9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In silico investigation of lactone and thiolactone inhibitors in bacterial quorum sensing using molecular modeling
In the present study, the origin of the anti-quorum sensing (QS) activities of several members of a recently synthesized and in vitro tested class of lactone and thiolactone based inhibitors were computationally investigated. Docking and molecular dynamic (MD) simulations and binding free energy calculations were carried out to reveal the exact binding and inhibitory profiles of these compounds. The higher in vitro activity of the lactone series relative to their thiolactone isosteres was verified based on estimating the binding energies, the docking scores and monitoring the stability of the complexes produced in the MD simulations. The strong electrostatic contribution to the binding energies may be responsible for the higher inhibitory activity of the lactone with respect to the thiolactone series. The results of this study help to understand the anti-QS properties of lactone-based inhibitors and provide important information that may assist in the synthesis of novel QS inhibitors.