深度学习协助物联网搜索引擎进行灾害损失评估

Q2 Engineering
Hengshuo Liang, Lauren Burgess, Weixian Liao, Erik Blasch, Wei Yu
{"title":"深度学习协助物联网搜索引擎进行灾害损失评估","authors":"Hengshuo Liang, Lauren Burgess, Weixian Liao, Erik Blasch, Wei Yu","doi":"10.1080/23335777.2022.2051210","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we address the issue of disaster damage assessments using deep learning (DL) techniques. Specifically, we propose integrating DL techniques into the Internet of Things Search Engine (IoTSE) system to carry out disaster damage assessment. Our approach is to design two scenarios, Single and Complex Event Settings, to complete performance validation using four Convolutional Neural Network (CNN) models. These two scenarios are designed with three possible network services. Our experimental results confirm that all four CNN models can learn each label during the single event setting well. Whereas, with complex event settings, the CNN models have learning difficulty because multiple events have closely related labels.","PeriodicalId":37058,"journal":{"name":"Cyber-Physical Systems","volume":"19 1","pages":"313 - 337"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Learning Assist IoT Search Engine for Disaster Damage Assessment\",\"authors\":\"Hengshuo Liang, Lauren Burgess, Weixian Liao, Erik Blasch, Wei Yu\",\"doi\":\"10.1080/23335777.2022.2051210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, we address the issue of disaster damage assessments using deep learning (DL) techniques. Specifically, we propose integrating DL techniques into the Internet of Things Search Engine (IoTSE) system to carry out disaster damage assessment. Our approach is to design two scenarios, Single and Complex Event Settings, to complete performance validation using four Convolutional Neural Network (CNN) models. These two scenarios are designed with three possible network services. Our experimental results confirm that all four CNN models can learn each label during the single event setting well. Whereas, with complex event settings, the CNN models have learning difficulty because multiple events have closely related labels.\",\"PeriodicalId\":37058,\"journal\":{\"name\":\"Cyber-Physical Systems\",\"volume\":\"19 1\",\"pages\":\"313 - 337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23335777.2022.2051210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335777.2022.2051210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们使用深度学习(DL)技术解决了灾害损害评估问题。具体而言,我们建议将深度学习技术集成到物联网搜索引擎(IoTSE)系统中,以进行灾害损害评估。我们的方法是设计两种场景,单一事件设置和复杂事件设置,使用四种卷积神经网络(CNN)模型完成性能验证。这两个场景设计了三种可能的网络服务。我们的实验结果证实,这四种CNN模型都可以很好地学习单个事件设置中的每个标签。然而,在复杂事件设置下,CNN模型存在学习困难,因为多个事件具有密切相关的标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Assist IoT Search Engine for Disaster Damage Assessment
ABSTRACT In this paper, we address the issue of disaster damage assessments using deep learning (DL) techniques. Specifically, we propose integrating DL techniques into the Internet of Things Search Engine (IoTSE) system to carry out disaster damage assessment. Our approach is to design two scenarios, Single and Complex Event Settings, to complete performance validation using four Convolutional Neural Network (CNN) models. These two scenarios are designed with three possible network services. Our experimental results confirm that all four CNN models can learn each label during the single event setting well. Whereas, with complex event settings, the CNN models have learning difficulty because multiple events have closely related labels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cyber-Physical Systems
Cyber-Physical Systems Engineering-Computational Mechanics
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信