Riemann-Liouville分数阶积分算子的Hermite-Hadamard型不等式的改进

IF 2.2 Q1 MATHEMATICS, APPLIED
H. Budak
{"title":"Riemann-Liouville分数阶积分算子的Hermite-Hadamard型不等式的改进","authors":"H. Budak","doi":"10.11121/ijocta.01.2019.00585","DOIUrl":null,"url":null,"abstract":"In this paper, we first establish weighted versions of Hermite-Hadamard typeinequalities for Riemann-Liouville fractional integral operators utilizingweighted function. Then we obtain some refinements of these inequalities. Theresults obtained in this study would provide generalization of inequalitiesproved in earlier works.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"337 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On refinements of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral operators\",\"authors\":\"H. Budak\",\"doi\":\"10.11121/ijocta.01.2019.00585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first establish weighted versions of Hermite-Hadamard typeinequalities for Riemann-Liouville fractional integral operators utilizingweighted function. Then we obtain some refinements of these inequalities. Theresults obtained in this study would provide generalization of inequalitiesproved in earlier works.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"337 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.01.2019.00585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.01.2019.00585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

本文首先利用加权函数建立了Riemann-Liouville分数阶积分算子的Hermite-Hadamard型不等式的加权版本。然后我们得到了这些不等式的一些改进。本研究得到的结果将提供在早期工作中证明的不等式的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On refinements of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral operators
In this paper, we first establish weighted versions of Hermite-Hadamard typeinequalities for Riemann-Liouville fractional integral operators utilizingweighted function. Then we obtain some refinements of these inequalities. Theresults obtained in this study would provide generalization of inequalitiesproved in earlier works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信