基于群体优化奖励的行人属性识别

Zhong Ji, Zhenfei Hu, Yaodong Wang, Shengjia Li
{"title":"基于群体优化奖励的行人属性识别","authors":"Zhong Ji, Zhenfei Hu, Yaodong Wang, Shengjia Li","doi":"10.48550/arXiv.2205.14042","DOIUrl":null,"url":null,"abstract":"Pedestrian Attribute Recognition (PAR) is a challenging task in intelligent video surveillance. Two key challenges in PAR include complex alignment relations between images and attributes, and imbalanced data distribution. Existing approaches usually formulate PAR as a recognition task. Different from them, this paper addresses it as a decision-making task via a reinforcement learning framework. Specifically, PAR is formulated as a Markov decision process (MDP) by designing ingenious states, action space, reward function and state transition. To alleviate the inter-attribute imbalance problem, we apply an Attribute Grouping Strategy (AGS) by dividing all attributes into subgroups according to their region and category information. Then we employ an agent to recognize each group of attributes, which is trained with Deep Q-learning algorithm. We also propose a Group Optimization Reward (GOR) function to alleviate the intra-attribute imbalance problem. Experimental results on the three benchmark datasets of PETA, RAP and PA100K illustrate the effectiveness and competitiveness of the proposed approach and demonstrate that the application of reinforcement learning to PAR is a valuable research direction.","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reinforced Pedestrian Attribute Recognition with Group Optimization Reward\",\"authors\":\"Zhong Ji, Zhenfei Hu, Yaodong Wang, Shengjia Li\",\"doi\":\"10.48550/arXiv.2205.14042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian Attribute Recognition (PAR) is a challenging task in intelligent video surveillance. Two key challenges in PAR include complex alignment relations between images and attributes, and imbalanced data distribution. Existing approaches usually formulate PAR as a recognition task. Different from them, this paper addresses it as a decision-making task via a reinforcement learning framework. Specifically, PAR is formulated as a Markov decision process (MDP) by designing ingenious states, action space, reward function and state transition. To alleviate the inter-attribute imbalance problem, we apply an Attribute Grouping Strategy (AGS) by dividing all attributes into subgroups according to their region and category information. Then we employ an agent to recognize each group of attributes, which is trained with Deep Q-learning algorithm. We also propose a Group Optimization Reward (GOR) function to alleviate the intra-attribute imbalance problem. Experimental results on the three benchmark datasets of PETA, RAP and PA100K illustrate the effectiveness and competitiveness of the proposed approach and demonstrate that the application of reinforcement learning to PAR is a valuable research direction.\",\"PeriodicalId\":10549,\"journal\":{\"name\":\"Comput. Vis. Image Underst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Vis. Image Underst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.14042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Vis. Image Underst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.14042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

行人属性识别是智能视频监控中的一个难点。PAR面临的两个关键挑战包括图像和属性之间复杂的对齐关系以及数据分布的不平衡。现有的方法通常将PAR定义为一个识别任务。与它们不同的是,本文通过强化学习框架将其作为决策任务来处理。具体来说,PAR通过设计巧妙的状态、动作空间、奖励函数和状态转移,将其表述为马尔可夫决策过程(MDP)。为了缓解属性间不平衡问题,我们采用了一种属性分组策略(AGS),将所有属性根据其区域和类别信息划分为子组。然后,我们使用一个智能体来识别每组属性,并使用深度q -学习算法对其进行训练。我们还提出了一个组优化奖励(GOR)函数来缓解属性内不平衡问题。在PETA、RAP和PA100K三个基准数据集上的实验结果表明了所提方法的有效性和竞争力,并证明了将强化学习应用于PAR是一个有价值的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforced Pedestrian Attribute Recognition with Group Optimization Reward
Pedestrian Attribute Recognition (PAR) is a challenging task in intelligent video surveillance. Two key challenges in PAR include complex alignment relations between images and attributes, and imbalanced data distribution. Existing approaches usually formulate PAR as a recognition task. Different from them, this paper addresses it as a decision-making task via a reinforcement learning framework. Specifically, PAR is formulated as a Markov decision process (MDP) by designing ingenious states, action space, reward function and state transition. To alleviate the inter-attribute imbalance problem, we apply an Attribute Grouping Strategy (AGS) by dividing all attributes into subgroups according to their region and category information. Then we employ an agent to recognize each group of attributes, which is trained with Deep Q-learning algorithm. We also propose a Group Optimization Reward (GOR) function to alleviate the intra-attribute imbalance problem. Experimental results on the three benchmark datasets of PETA, RAP and PA100K illustrate the effectiveness and competitiveness of the proposed approach and demonstrate that the application of reinforcement learning to PAR is a valuable research direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信