应用架构演化中的可靠性分析与质量影响预测

Sepideh Emam, John Komick
{"title":"应用架构演化中的可靠性分析与质量影响预测","authors":"Sepideh Emam, John Komick","doi":"10.1145/2752489.2752490","DOIUrl":null,"url":null,"abstract":"Although many architecture evolution techniques exist, most of them are not able to perform a quality impact prediction. Most of these techniques concentrate on analyzing the expected performance and reliability of design alternatives on prototypes or previous experiences. In this paper, we propose a novel model-driven prediction approach, which is estimated, based on the extractable information from the User Behavioral Flow and the Continues-Time Markov Chain (CTMC) and its corresponding Hidden Markov Mode (HMM). This paper also reports our experience and the lessons we learned in applying this approach on MyUAlberta applications as a large-scale case study.","PeriodicalId":6489,"journal":{"name":"2015 First International Workshop on Automotive Software Architecture (WASA)","volume":"47 1","pages":"43-46"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability analysis and quality impact prediction in application architecture evolution\",\"authors\":\"Sepideh Emam, John Komick\",\"doi\":\"10.1145/2752489.2752490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although many architecture evolution techniques exist, most of them are not able to perform a quality impact prediction. Most of these techniques concentrate on analyzing the expected performance and reliability of design alternatives on prototypes or previous experiences. In this paper, we propose a novel model-driven prediction approach, which is estimated, based on the extractable information from the User Behavioral Flow and the Continues-Time Markov Chain (CTMC) and its corresponding Hidden Markov Mode (HMM). This paper also reports our experience and the lessons we learned in applying this approach on MyUAlberta applications as a large-scale case study.\",\"PeriodicalId\":6489,\"journal\":{\"name\":\"2015 First International Workshop on Automotive Software Architecture (WASA)\",\"volume\":\"47 1\",\"pages\":\"43-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 First International Workshop on Automotive Software Architecture (WASA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2752489.2752490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 First International Workshop on Automotive Software Architecture (WASA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2752489.2752490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管存在许多架构演化技术,但它们中的大多数都不能执行高质量的影响预测。这些技术大多集中于分析基于原型或先前经验的设计方案的预期性能和可靠性。本文提出了一种新的模型驱动预测方法,该方法基于用户行为流和连续时间马尔可夫链(CTMC)及其相应的隐马尔可夫模式(HMM)的可提取信息进行估计。本文还报告了我们在将这种方法应用于MyUAlberta应用程序中作为大规模案例研究的经验和教训。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability analysis and quality impact prediction in application architecture evolution
Although many architecture evolution techniques exist, most of them are not able to perform a quality impact prediction. Most of these techniques concentrate on analyzing the expected performance and reliability of design alternatives on prototypes or previous experiences. In this paper, we propose a novel model-driven prediction approach, which is estimated, based on the extractable information from the User Behavioral Flow and the Continues-Time Markov Chain (CTMC) and its corresponding Hidden Markov Mode (HMM). This paper also reports our experience and the lessons we learned in applying this approach on MyUAlberta applications as a large-scale case study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信