{"title":"用于分析小型水管网络流量的电子表格工具","authors":"K. Adedeji, Y. Hamam, B. Abe, A. Abu-Mahfouz","doi":"10.1109/INDIN.2017.8104947","DOIUrl":null,"url":null,"abstract":"The analysis of water piping system has been presented by several authors in the past and in recent years proposing several solution algorithms. Among the notable methods are the Hardy cross method, linear approximation method, Newton Raphson method and the hybrid method to mention but a few, to solve a system of partly linear, and partly non-linear hydraulic equations. In this paper, the authors demonstrate the use of Excel solver to verify the Hardy Cross method for the analysis of flow in water piping networks. A single-loop water network derived from real situation was used as numerical example and case study. Detailed numerical data are presented to explain the results of the studied network.","PeriodicalId":6595,"journal":{"name":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","volume":"12 1","pages":"1213-1218"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A spreadsheet tool for the analysis of flows in small-scale water piping networks\",\"authors\":\"K. Adedeji, Y. Hamam, B. Abe, A. Abu-Mahfouz\",\"doi\":\"10.1109/INDIN.2017.8104947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analysis of water piping system has been presented by several authors in the past and in recent years proposing several solution algorithms. Among the notable methods are the Hardy cross method, linear approximation method, Newton Raphson method and the hybrid method to mention but a few, to solve a system of partly linear, and partly non-linear hydraulic equations. In this paper, the authors demonstrate the use of Excel solver to verify the Hardy Cross method for the analysis of flow in water piping networks. A single-loop water network derived from real situation was used as numerical example and case study. Detailed numerical data are presented to explain the results of the studied network.\",\"PeriodicalId\":6595,\"journal\":{\"name\":\"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"12 1\",\"pages\":\"1213-1218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2017.8104947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2017.8104947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A spreadsheet tool for the analysis of flows in small-scale water piping networks
The analysis of water piping system has been presented by several authors in the past and in recent years proposing several solution algorithms. Among the notable methods are the Hardy cross method, linear approximation method, Newton Raphson method and the hybrid method to mention but a few, to solve a system of partly linear, and partly non-linear hydraulic equations. In this paper, the authors demonstrate the use of Excel solver to verify the Hardy Cross method for the analysis of flow in water piping networks. A single-loop water network derived from real situation was used as numerical example and case study. Detailed numerical data are presented to explain the results of the studied network.