使用生成对抗网络缩小瑞士历史风场的规模

Ophélia Miralles, Daniel Steinfield, O. Martius, A. Davison
{"title":"使用生成对抗网络缩小瑞士历史风场的规模","authors":"Ophélia Miralles, Daniel Steinfield, O. Martius, A. Davison","doi":"10.1175/aies-d-22-0018.1","DOIUrl":null,"url":null,"abstract":"\nNear-surface wind is difficult to estimate using global numerical weather and climate models, as airflow is strongly modified by underlying topography, especially that of a country such as Switzerland. In this article, we use a statistical approach based on deep learning and a high-resolution Digital Elevation Model to spatially downscale hourly near-surface wind fields at coarse resolution from ERA5 reanalysis from their original 25 km to a 1.1 km grid. A 1.1 km resolution wind dataset for 2016–2020 from the operational numerical weather prediction model COSMO-1 of the national weather service, MeteoSwiss, is used to train and validate our model, a generative adversarial network (GAN) with gradient penalized Wasserstein loss aided by transfer learning. The results are realistic-looking high-resolution historical maps of gridded hourly wind fields over Switzerland and very good and robust predictions of the aggregated wind speed distribution. Regionally averaged image-specific metrics show a clear improvement in prediction compared to ERA5, with skill measures generally better for locations over the flatter Swiss Plateau than for Alpine regions. The downscaled wind fields demonstrate higher-resolution, physically plausible orographic effects, such as ridge acceleration and sheltering, which are not resolved in the original ERA5 fields.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Downscaling of Historical Wind Fields over Switzerland using Generative Adversarial Networks\",\"authors\":\"Ophélia Miralles, Daniel Steinfield, O. Martius, A. Davison\",\"doi\":\"10.1175/aies-d-22-0018.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nNear-surface wind is difficult to estimate using global numerical weather and climate models, as airflow is strongly modified by underlying topography, especially that of a country such as Switzerland. In this article, we use a statistical approach based on deep learning and a high-resolution Digital Elevation Model to spatially downscale hourly near-surface wind fields at coarse resolution from ERA5 reanalysis from their original 25 km to a 1.1 km grid. A 1.1 km resolution wind dataset for 2016–2020 from the operational numerical weather prediction model COSMO-1 of the national weather service, MeteoSwiss, is used to train and validate our model, a generative adversarial network (GAN) with gradient penalized Wasserstein loss aided by transfer learning. The results are realistic-looking high-resolution historical maps of gridded hourly wind fields over Switzerland and very good and robust predictions of the aggregated wind speed distribution. Regionally averaged image-specific metrics show a clear improvement in prediction compared to ERA5, with skill measures generally better for locations over the flatter Swiss Plateau than for Alpine regions. The downscaled wind fields demonstrate higher-resolution, physically plausible orographic effects, such as ridge acceleration and sheltering, which are not resolved in the original ERA5 fields.\",\"PeriodicalId\":94369,\"journal\":{\"name\":\"Artificial intelligence for the earth systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence for the earth systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/aies-d-22-0018.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0018.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近地面风很难用全球数值天气和气候模式来估计,因为气流受到下层地形的强烈影响,尤其是像瑞士这样的国家。在本文中,我们使用基于深度学习和高分辨率数字高程模型的统计方法,将ERA5再分析的粗分辨率每小时近地面风场的空间尺度从原始的25公里降至1.1公里网格。使用来自国家气象局MeteoSwiss的运行数值天气预报模型cosmos -1的2016-2020年1.1公里分辨率的风数据集来训练和验证我们的模型,这是一个在迁移学习辅助下具有梯度惩罚Wasserstein损失的生成对抗网络(GAN)。结果是真实的高分辨率历史地图,网格每小时风场在瑞士和非常好的和可靠的预测汇总风速分布。与ERA5相比,区域平均图像特定指标在预测方面有明显改善,瑞士高原较平坦地区的技能测量通常优于阿尔卑斯地区。缩小尺度的风场表现出更高分辨率的、物理上合理的地形效应,如脊加速和遮蔽,这些在原始的ERA5场中没有解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Downscaling of Historical Wind Fields over Switzerland using Generative Adversarial Networks
Near-surface wind is difficult to estimate using global numerical weather and climate models, as airflow is strongly modified by underlying topography, especially that of a country such as Switzerland. In this article, we use a statistical approach based on deep learning and a high-resolution Digital Elevation Model to spatially downscale hourly near-surface wind fields at coarse resolution from ERA5 reanalysis from their original 25 km to a 1.1 km grid. A 1.1 km resolution wind dataset for 2016–2020 from the operational numerical weather prediction model COSMO-1 of the national weather service, MeteoSwiss, is used to train and validate our model, a generative adversarial network (GAN) with gradient penalized Wasserstein loss aided by transfer learning. The results are realistic-looking high-resolution historical maps of gridded hourly wind fields over Switzerland and very good and robust predictions of the aggregated wind speed distribution. Regionally averaged image-specific metrics show a clear improvement in prediction compared to ERA5, with skill measures generally better for locations over the flatter Swiss Plateau than for Alpine regions. The downscaled wind fields demonstrate higher-resolution, physically plausible orographic effects, such as ridge acceleration and sheltering, which are not resolved in the original ERA5 fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信