平面树和二值序列之间的对应关系

David A. Klarner
{"title":"平面树和二值序列之间的对应关系","authors":"David A. Klarner","doi":"10.1016/S0021-9800(70)80093-X","DOIUrl":null,"url":null,"abstract":"<div><p>The subject of each of the five sections of this paper is the planted plane trees discussed by Harary, Prins, and Tutte [7]. A description of the content of the present work is given in Section 1. Section 2 is devoted to a definition of plane trees in terms of finite sets and relations defined on them—we hope this definition will replace the topological concepts introduced in [7]. A one-to-one correspondence between the classes of isomorphic planted plane trees with <em>n</em>+2 vertices and the classes of isomorphic 3-valent planted plane trees with 2<em>n</em>+2 vertices is given in Section 3. Sections 4 and 5 deal with enumeration problems.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 4","pages":"Pages 401-411"},"PeriodicalIF":0.0000,"publicationDate":"1970-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80093-X","citationCount":"104","resultStr":"{\"title\":\"Correspondences between plane trees and binary sequences\",\"authors\":\"David A. Klarner\",\"doi\":\"10.1016/S0021-9800(70)80093-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The subject of each of the five sections of this paper is the planted plane trees discussed by Harary, Prins, and Tutte [7]. A description of the content of the present work is given in Section 1. Section 2 is devoted to a definition of plane trees in terms of finite sets and relations defined on them—we hope this definition will replace the topological concepts introduced in [7]. A one-to-one correspondence between the classes of isomorphic planted plane trees with <em>n</em>+2 vertices and the classes of isomorphic 3-valent planted plane trees with 2<em>n</em>+2 vertices is given in Section 3. Sections 4 and 5 deal with enumeration problems.</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"9 4\",\"pages\":\"Pages 401-411\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80093-X\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002198007080093X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002198007080093X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

本文的五个部分中的每个部分的主题都是由harry, Prins和Tutte bbb讨论的种植的梧桐树。第1节给出了当前工作内容的描述。第2节致力于用有限集合和在它们上面定义的关系来定义平面树——我们希望这个定义将取代[7]中介绍的拓扑概念。第3节给出了n+2个顶点同构种植平面树类与2n+2个顶点同构3价种植平面树类之间的一一对应关系。第4节和第5节处理枚举问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correspondences between plane trees and binary sequences

The subject of each of the five sections of this paper is the planted plane trees discussed by Harary, Prins, and Tutte [7]. A description of the content of the present work is given in Section 1. Section 2 is devoted to a definition of plane trees in terms of finite sets and relations defined on them—we hope this definition will replace the topological concepts introduced in [7]. A one-to-one correspondence between the classes of isomorphic planted plane trees with n+2 vertices and the classes of isomorphic 3-valent planted plane trees with 2n+2 vertices is given in Section 3. Sections 4 and 5 deal with enumeration problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信