{"title":"工艺参数对烧结ti-20nb生物医用合金孔隙率和显微硬度的影响","authors":"L. Benić, Gorana Domitrović, Žiga Erman, J. Šubić","doi":"10.37904/metal.2020.3581","DOIUrl":null,"url":null,"abstract":"Titanium based alloys are increasingly used in biomedicine due to their favourable properties. However, because of their high cost, new methods are being developed to produce more economical alloys. Therefore, in the framework of this work, Ti-20Nb alloy was produced by powder metallurgy. Namely, experimental alloy was prepared by mechanical alloying in a ball mill. The samples were singled out from the powder mixture and pressed on a hydraulic press. Sintering was carried out in a tube furnace in an argon atmosphere. Different processing parameters regarding the time and temperature of sintering were applied. Chemical homogeneity was analysed using the energy-dispersive spectrometry. Porosity was observed using the light microscope and microhardness was determined by Vickers method. The obtained results show that with a small correction of the applied technological parameters, in terms of time extension of mixing/mechanical alloying, it is possible to produce economically Ti-20Nb alloy having the properties suitable for biomedical application by using powder metallurgy technology.","PeriodicalId":21337,"journal":{"name":"Revue De Metallurgie-cahiers D Informations Techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"the influence of the processing parameters on the porosity and microhardness of sintered ti-20nb biomedical alloy\",\"authors\":\"L. Benić, Gorana Domitrović, Žiga Erman, J. Šubić\",\"doi\":\"10.37904/metal.2020.3581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Titanium based alloys are increasingly used in biomedicine due to their favourable properties. However, because of their high cost, new methods are being developed to produce more economical alloys. Therefore, in the framework of this work, Ti-20Nb alloy was produced by powder metallurgy. Namely, experimental alloy was prepared by mechanical alloying in a ball mill. The samples were singled out from the powder mixture and pressed on a hydraulic press. Sintering was carried out in a tube furnace in an argon atmosphere. Different processing parameters regarding the time and temperature of sintering were applied. Chemical homogeneity was analysed using the energy-dispersive spectrometry. Porosity was observed using the light microscope and microhardness was determined by Vickers method. The obtained results show that with a small correction of the applied technological parameters, in terms of time extension of mixing/mechanical alloying, it is possible to produce economically Ti-20Nb alloy having the properties suitable for biomedical application by using powder metallurgy technology.\",\"PeriodicalId\":21337,\"journal\":{\"name\":\"Revue De Metallurgie-cahiers D Informations Techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue De Metallurgie-cahiers D Informations Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37904/metal.2020.3581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue De Metallurgie-cahiers D Informations Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37904/metal.2020.3581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
the influence of the processing parameters on the porosity and microhardness of sintered ti-20nb biomedical alloy
Titanium based alloys are increasingly used in biomedicine due to their favourable properties. However, because of their high cost, new methods are being developed to produce more economical alloys. Therefore, in the framework of this work, Ti-20Nb alloy was produced by powder metallurgy. Namely, experimental alloy was prepared by mechanical alloying in a ball mill. The samples were singled out from the powder mixture and pressed on a hydraulic press. Sintering was carried out in a tube furnace in an argon atmosphere. Different processing parameters regarding the time and temperature of sintering were applied. Chemical homogeneity was analysed using the energy-dispersive spectrometry. Porosity was observed using the light microscope and microhardness was determined by Vickers method. The obtained results show that with a small correction of the applied technological parameters, in terms of time extension of mixing/mechanical alloying, it is possible to produce economically Ti-20Nb alloy having the properties suitable for biomedical application by using powder metallurgy technology.