分布鲁棒优化:理论与应用综述

IF 1.1 Q2 MATHEMATICS, APPLIED
Fengming Lin, X. Fang, Zheming Gao
{"title":"分布鲁棒优化:理论与应用综述","authors":"Fengming Lin, X. Fang, Zheming Gao","doi":"10.3934/naco.2021057","DOIUrl":null,"url":null,"abstract":"In this paper, we survey the primary research on the theory and applications of distributionally robust optimization (DRO). We start with reviewing the modeling power and computational attractiveness of DRO approaches, induced by the ambiguity sets structure and tractable robust counterpart reformulations. Next, we summarize the efficient solution methods, out-of-sample performance guarantee, and convergence analysis. Then, we illustrate some applications of DRO in machine learning and operations research, and finally, we discuss the future research directions.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Distributionally Robust Optimization: A review on theory and applications\",\"authors\":\"Fengming Lin, X. Fang, Zheming Gao\",\"doi\":\"10.3934/naco.2021057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we survey the primary research on the theory and applications of distributionally robust optimization (DRO). We start with reviewing the modeling power and computational attractiveness of DRO approaches, induced by the ambiguity sets structure and tractable robust counterpart reformulations. Next, we summarize the efficient solution methods, out-of-sample performance guarantee, and convergence analysis. Then, we illustrate some applications of DRO in machine learning and operations research, and finally, we discuss the future research directions.\",\"PeriodicalId\":44957,\"journal\":{\"name\":\"Numerical Algebra Control and Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algebra Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2021057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 52

摘要

本文综述了分布鲁棒优化(DRO)理论和应用方面的研究进展。我们首先回顾了DRO方法的建模能力和计算吸引力,这是由模糊集结构和可处理的鲁棒对应物重构引起的。其次,我们总结了有效的求解方法、样本外性能保证和收敛性分析。然后,我们阐述了DRO在机器学习和运筹学中的一些应用,最后讨论了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributionally Robust Optimization: A review on theory and applications
In this paper, we survey the primary research on the theory and applications of distributionally robust optimization (DRO). We start with reviewing the modeling power and computational attractiveness of DRO approaches, induced by the ambiguity sets structure and tractable robust counterpart reformulations. Next, we summarize the efficient solution methods, out-of-sample performance guarantee, and convergence analysis. Then, we illustrate some applications of DRO in machine learning and operations research, and finally, we discuss the future research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
62
期刊介绍: Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信