{"title":"基于Hermite小波伽辽金的求解抛物型Volterra偏积分微分方程的有效方法及其收敛性分析","authors":"Yaser Rostami","doi":"10.3846/mma.2023.15690","DOIUrl":null,"url":null,"abstract":"In this research article Hermite wavelet based Galerkin method is developed for the numerical solution of Volterra integro-differential equations in onedimension with initial and boundary conditions. These equations include the partial differential of an unknown function and the integral term containing the unknown function which is the memory of the problem. Wavelet analysis is a recently developed mathematical tool in applied mathematics. For this purpose, Hermit wavelet Galerkin method has proven a very powerful numerical technique for the stable and accurate solution of giving boundary value problem. The theorem of convergence analysis and compare some numerical examples with the use of the proposed method and the exact solutions shows the efficiency and high accuracy of the proposed method. Several figures are plotted to establish the error analysis of the approach presented.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Effective Computational Approach based on Hermite wavelet Galerkin for solving parabolic Volterra Partial integro differential equations and its convergence Analysis\",\"authors\":\"Yaser Rostami\",\"doi\":\"10.3846/mma.2023.15690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research article Hermite wavelet based Galerkin method is developed for the numerical solution of Volterra integro-differential equations in onedimension with initial and boundary conditions. These equations include the partial differential of an unknown function and the integral term containing the unknown function which is the memory of the problem. Wavelet analysis is a recently developed mathematical tool in applied mathematics. For this purpose, Hermit wavelet Galerkin method has proven a very powerful numerical technique for the stable and accurate solution of giving boundary value problem. The theorem of convergence analysis and compare some numerical examples with the use of the proposed method and the exact solutions shows the efficiency and high accuracy of the proposed method. Several figures are plotted to establish the error analysis of the approach presented.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2023.15690\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2023.15690","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An Effective Computational Approach based on Hermite wavelet Galerkin for solving parabolic Volterra Partial integro differential equations and its convergence Analysis
In this research article Hermite wavelet based Galerkin method is developed for the numerical solution of Volterra integro-differential equations in onedimension with initial and boundary conditions. These equations include the partial differential of an unknown function and the integral term containing the unknown function which is the memory of the problem. Wavelet analysis is a recently developed mathematical tool in applied mathematics. For this purpose, Hermit wavelet Galerkin method has proven a very powerful numerical technique for the stable and accurate solution of giving boundary value problem. The theorem of convergence analysis and compare some numerical examples with the use of the proposed method and the exact solutions shows the efficiency and high accuracy of the proposed method. Several figures are plotted to establish the error analysis of the approach presented.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.