并发程序保终止精化的组合验证

Hongjin Liang, Xinyu Feng, Zhong Shao
{"title":"并发程序保终止精化的组合验证","authors":"Hongjin Liang, Xinyu Feng, Zhong Shao","doi":"10.1145/2603088.2603123","DOIUrl":null,"url":null,"abstract":"Many verification problems can be reduced to refinement verification. However, existing work on verifying refinement of concurrent programs either fails to prove the preservation of termination, allowing a diverging program to trivially refine any programs, or is difficult to apply in compositional thread-local reasoning. In this paper, we first propose a new simulation technique, which establishes termination-preserving refinement and is a congruence with respect to parallel composition. We then give a proof theory for the simulation, which is the first Hoare-style concurrent program logic supporting termination-preserving refinement proofs. We show two key applications of our logic, i.e., verifying linearizability and lock-freedom together for fine-grained concurrent objects, and verifying full correctness of optimizations of concurrent algorithms.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"128 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Compositional verification of termination-preserving refinement of concurrent programs\",\"authors\":\"Hongjin Liang, Xinyu Feng, Zhong Shao\",\"doi\":\"10.1145/2603088.2603123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many verification problems can be reduced to refinement verification. However, existing work on verifying refinement of concurrent programs either fails to prove the preservation of termination, allowing a diverging program to trivially refine any programs, or is difficult to apply in compositional thread-local reasoning. In this paper, we first propose a new simulation technique, which establishes termination-preserving refinement and is a congruence with respect to parallel composition. We then give a proof theory for the simulation, which is the first Hoare-style concurrent program logic supporting termination-preserving refinement proofs. We show two key applications of our logic, i.e., verifying linearizability and lock-freedom together for fine-grained concurrent objects, and verifying full correctness of optimizations of concurrent algorithms.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"128 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

许多验证问题可以简化为精化验证。然而,现有的验证并发程序精化的工作要么无法证明终止的保存,允许发散程序对任何程序进行简单的精化,要么难以应用于组合线程局部推理。在本文中,我们首先提出了一种新的模拟技术,该技术建立了保持终止的细化,并且是关于并行组合的同余。然后给出了仿真的证明理论,这是第一个支持保终止精化证明的hoare式并发程序逻辑。我们展示了我们的逻辑的两个关键应用,即验证细粒度并发对象的线性性和锁自由度,以及验证并发算法优化的完全正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compositional verification of termination-preserving refinement of concurrent programs
Many verification problems can be reduced to refinement verification. However, existing work on verifying refinement of concurrent programs either fails to prove the preservation of termination, allowing a diverging program to trivially refine any programs, or is difficult to apply in compositional thread-local reasoning. In this paper, we first propose a new simulation technique, which establishes termination-preserving refinement and is a congruence with respect to parallel composition. We then give a proof theory for the simulation, which is the first Hoare-style concurrent program logic supporting termination-preserving refinement proofs. We show two key applications of our logic, i.e., verifying linearizability and lock-freedom together for fine-grained concurrent objects, and verifying full correctness of optimizations of concurrent algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信