精确估计黎曼函数的和

R. Brent, Dave Platt, T. Trudgian
{"title":"精确估计黎曼函数的和","authors":"R. Brent, Dave Platt, T. Trudgian","doi":"10.1090/mcom/3652","DOIUrl":null,"url":null,"abstract":"We consider sums of the form $\\sum \\phi(\\gamma)$, where $\\phi$ is a given function, and $\\gamma$ ranges over the ordinates of nontrivial zeros of the Riemann zeta-function in a given interval. We show how the numerical estimation of such sums can be accelerated by a simple device, and give examples involving both convergent and divergent infinite sums.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"13 1","pages":"2923-2935"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Accurate estimation of sums over zeros of the Riemann zeta-function\",\"authors\":\"R. Brent, Dave Platt, T. Trudgian\",\"doi\":\"10.1090/mcom/3652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider sums of the form $\\\\sum \\\\phi(\\\\gamma)$, where $\\\\phi$ is a given function, and $\\\\gamma$ ranges over the ordinates of nontrivial zeros of the Riemann zeta-function in a given interval. We show how the numerical estimation of such sums can be accelerated by a simple device, and give examples involving both convergent and divergent infinite sums.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"13 1\",\"pages\":\"2923-2935\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们考虑$\sum \phi(\gamma)$形式的和,其中$\phi$是给定的函数,$\gamma$是给定区间内黎曼ζ函数的非平凡零点的坐标上的值域。我们展示了如何用一个简单的装置来加速这种和的数值估计,并给出了涉及收敛和发散无限和的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate estimation of sums over zeros of the Riemann zeta-function
We consider sums of the form $\sum \phi(\gamma)$, where $\phi$ is a given function, and $\gamma$ ranges over the ordinates of nontrivial zeros of the Riemann zeta-function in a given interval. We show how the numerical estimation of such sums can be accelerated by a simple device, and give examples involving both convergent and divergent infinite sums.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信