接头设计对双相不锈钢焊缝冶金性能和力学性能的影响

R. Dhiman, Sorabh Singhal, R. Saxena
{"title":"接头设计对双相不锈钢焊缝冶金性能和力学性能的影响","authors":"R. Dhiman, Sorabh Singhal, R. Saxena","doi":"10.4314/ijest.v14i2.3","DOIUrl":null,"url":null,"abstract":"In the present investigation, the influence of joint design on the microstructure and the mechanical properties of SAF 2205 duplex stainless steel welds are reported. Plates with two different joint designs were welded using the gas tungsten arc welding process. To investigate the sole effect of joint design, the joints were designed in such a way that both joints have similar groove volumes. The weldments were investigated for microstructural characterization, ferrite content, and microhardness study; later, they were subjected to Charpy V-notch impact test, transverse tensile test, and fatigue testing in order to investigate the mechanical performance. Both the weld joints were able to achieve 100% joint efficiency in view of the transverse tensile test. Different weld joint configurations demonstrated the influence of the differential heat dissipation characteristics of the joints, evident from different morphological features revealed through optical microscopy of the weldment. The welding affected the ferrite(α)-austenite(γ) ratio of the weld metals and differed the welds in terms of ferrite content in the root and weld pass. The weld zone of the U-joint showed a 65.8% ferrite fraction and thus showed 18% more hardness as compared to the V-joint, while the V-joint had the highest yield stress of 617 MPa. The study revealed that the U-joint performed better in comparison to the V-joint in terms of microhardness, impact toughness, and fatigue behavior. The U-joint could resist around 15% more fatigue cycles than the V-joint under high cycle fatigue.","PeriodicalId":14145,"journal":{"name":"International journal of engineering science and technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint-design effect on the metallurgical and mechanical behavior of duplex stainless steel welds\",\"authors\":\"R. Dhiman, Sorabh Singhal, R. Saxena\",\"doi\":\"10.4314/ijest.v14i2.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present investigation, the influence of joint design on the microstructure and the mechanical properties of SAF 2205 duplex stainless steel welds are reported. Plates with two different joint designs were welded using the gas tungsten arc welding process. To investigate the sole effect of joint design, the joints were designed in such a way that both joints have similar groove volumes. The weldments were investigated for microstructural characterization, ferrite content, and microhardness study; later, they were subjected to Charpy V-notch impact test, transverse tensile test, and fatigue testing in order to investigate the mechanical performance. Both the weld joints were able to achieve 100% joint efficiency in view of the transverse tensile test. Different weld joint configurations demonstrated the influence of the differential heat dissipation characteristics of the joints, evident from different morphological features revealed through optical microscopy of the weldment. The welding affected the ferrite(α)-austenite(γ) ratio of the weld metals and differed the welds in terms of ferrite content in the root and weld pass. The weld zone of the U-joint showed a 65.8% ferrite fraction and thus showed 18% more hardness as compared to the V-joint, while the V-joint had the highest yield stress of 617 MPa. The study revealed that the U-joint performed better in comparison to the V-joint in terms of microhardness, impact toughness, and fatigue behavior. The U-joint could resist around 15% more fatigue cycles than the V-joint under high cycle fatigue.\",\"PeriodicalId\":14145,\"journal\":{\"name\":\"International journal of engineering science and technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of engineering science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/ijest.v14i2.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of engineering science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/ijest.v14i2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了接头设计对SAF 2205双相不锈钢焊缝组织和力学性能的影响。采用钨气弧焊工艺对两种不同接头设计的钢板进行了焊接。为了研究节理设计的唯一影响,节理的设计使两个节理具有相似的凹槽体积。对焊接件进行了显微组织表征、铁素体含量和显微硬度研究;随后进行了夏比v形缺口冲击试验、横向拉伸试验和疲劳试验,以研究其力学性能。从横向拉伸试验来看,两个焊缝都能达到100%的连接效率。不同的焊接接头形态对接头的不同散热特性产生了影响,这一点从焊件的光学显微镜观察到的不同形貌特征可以看出。焊接影响焊缝金属的铁素体(α)-奥氏体(γ)比,焊缝根部和焊道铁素体含量不同。u型接头焊缝区铁素体含量为65.8%,硬度比v型接头高18%,而v型接头的屈服应力最高,为617 MPa。研究表明,与v型接头相比,u型接头在显微硬度、冲击韧性和疲劳性能方面表现更好。在高周疲劳下,u型接头的抗疲劳次数比v型接头多15%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint-design effect on the metallurgical and mechanical behavior of duplex stainless steel welds
In the present investigation, the influence of joint design on the microstructure and the mechanical properties of SAF 2205 duplex stainless steel welds are reported. Plates with two different joint designs were welded using the gas tungsten arc welding process. To investigate the sole effect of joint design, the joints were designed in such a way that both joints have similar groove volumes. The weldments were investigated for microstructural characterization, ferrite content, and microhardness study; later, they were subjected to Charpy V-notch impact test, transverse tensile test, and fatigue testing in order to investigate the mechanical performance. Both the weld joints were able to achieve 100% joint efficiency in view of the transverse tensile test. Different weld joint configurations demonstrated the influence of the differential heat dissipation characteristics of the joints, evident from different morphological features revealed through optical microscopy of the weldment. The welding affected the ferrite(α)-austenite(γ) ratio of the weld metals and differed the welds in terms of ferrite content in the root and weld pass. The weld zone of the U-joint showed a 65.8% ferrite fraction and thus showed 18% more hardness as compared to the V-joint, while the V-joint had the highest yield stress of 617 MPa. The study revealed that the U-joint performed better in comparison to the V-joint in terms of microhardness, impact toughness, and fatigue behavior. The U-joint could resist around 15% more fatigue cycles than the V-joint under high cycle fatigue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信