并行几何多网格求解器的代码生成方法

IF 0.8 4区 数学 Q2 MATHEMATICS
H. Köstler, M. Heisig, N. Kohl, S. Kuckuk, Martin Bauer, U. Rüde
{"title":"并行几何多网格求解器的代码生成方法","authors":"H. Köstler, M. Heisig, N. Kohl, S. Kuckuk, Martin Bauer, U. Rüde","doi":"10.2478/auom-2020-0038","DOIUrl":null,"url":null,"abstract":"Abstract Software development for applications in computational science and engineering has become complex in recent years. This is mainly due to the increasing parallelism and heterogeneity in modern computer architectures and to the more realistic physical and mathematical models that have to be processed. One idea to address this issue is to use code generation techniques. In contrast to manual implementations in a general-purpose computing language, they allow to integrate automatic code transforms to produce efficient code for different models and platforms. As an example the numerical solution of an elliptic partial differential equation via generated geometric multigrid solvers is considered. We present three code generation approaches for it and discuss their advantages and disadvantages with respect to performance, portability, and productivity.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"1 1","pages":"123 - 152"},"PeriodicalIF":0.8000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Code generation approaches for parallel geometric multigrid solvers\",\"authors\":\"H. Köstler, M. Heisig, N. Kohl, S. Kuckuk, Martin Bauer, U. Rüde\",\"doi\":\"10.2478/auom-2020-0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Software development for applications in computational science and engineering has become complex in recent years. This is mainly due to the increasing parallelism and heterogeneity in modern computer architectures and to the more realistic physical and mathematical models that have to be processed. One idea to address this issue is to use code generation techniques. In contrast to manual implementations in a general-purpose computing language, they allow to integrate automatic code transforms to produce efficient code for different models and platforms. As an example the numerical solution of an elliptic partial differential equation via generated geometric multigrid solvers is considered. We present three code generation approaches for it and discuss their advantages and disadvantages with respect to performance, portability, and productivity.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"1 1\",\"pages\":\"123 - 152\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0038\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0038","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

近年来,应用于计算科学与工程的软件开发变得越来越复杂。这主要是由于现代计算机体系结构中并行性和异构性的增加,以及必须处理的更现实的物理和数学模型。解决这个问题的一个方法是使用代码生成技术。与使用通用计算语言的手动实现相比,它们允许集成自动代码转换,从而为不同的模型和平台生成有效的代码。作为一个例子,考虑了一个椭圆型偏微分方程通过生成的几何多网格求解器的数值解。我们给出了它的三种代码生成方法,并讨论了它们在性能、可移植性和生产力方面的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Code generation approaches for parallel geometric multigrid solvers
Abstract Software development for applications in computational science and engineering has become complex in recent years. This is mainly due to the increasing parallelism and heterogeneity in modern computer architectures and to the more realistic physical and mathematical models that have to be processed. One idea to address this issue is to use code generation techniques. In contrast to manual implementations in a general-purpose computing language, they allow to integrate automatic code transforms to produce efficient code for different models and platforms. As an example the numerical solution of an elliptic partial differential equation via generated geometric multigrid solvers is considered. We present three code generation approaches for it and discuss their advantages and disadvantages with respect to performance, portability, and productivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信