Harbir Antil, Thomas S. Brown, R. Lohner, F. Togashi, Deepanshu Verma
{"title":"具有固定偏置配置的深度神经网络","authors":"Harbir Antil, Thomas S. Brown, R. Lohner, F. Togashi, Deepanshu Verma","doi":"10.3934/naco.2022016","DOIUrl":null,"url":null,"abstract":"For any given neural network architecture a permutation of weights and biases results in the same functional network. This implies that optimization algorithms used to 'train' or 'learn' the network are faced with a very large number (in the millions even for small networks) of equivalent optimal solutions in the parameter space. To the best of our knowledge, this observation is absent in the literature. In order to narrow down the parameter search space, a novel technique is introduced in order to fix the bias vector configurations to be monotonically increasing. This is achieved by augmenting a typical learning problem with inequality constraints on the bias vectors in each layer. A Moreau-Yosida regularization based algorithm is proposed to handle these inequality constraints and a theoretical convergence of this algorithm is established. Applications of the proposed approach to standard trigonometric functions and more challenging stiff ordinary differential equations arising in chemically reacting flows clearly illustrate the benefits of the proposed approach. Further application of the approach on the MNIST dataset within TensorFlow, illustrate that the presented approach can be incorporated in any of the existing machine learning libraries.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep neural nets with fixed bias configuration\",\"authors\":\"Harbir Antil, Thomas S. Brown, R. Lohner, F. Togashi, Deepanshu Verma\",\"doi\":\"10.3934/naco.2022016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any given neural network architecture a permutation of weights and biases results in the same functional network. This implies that optimization algorithms used to 'train' or 'learn' the network are faced with a very large number (in the millions even for small networks) of equivalent optimal solutions in the parameter space. To the best of our knowledge, this observation is absent in the literature. In order to narrow down the parameter search space, a novel technique is introduced in order to fix the bias vector configurations to be monotonically increasing. This is achieved by augmenting a typical learning problem with inequality constraints on the bias vectors in each layer. A Moreau-Yosida regularization based algorithm is proposed to handle these inequality constraints and a theoretical convergence of this algorithm is established. Applications of the proposed approach to standard trigonometric functions and more challenging stiff ordinary differential equations arising in chemically reacting flows clearly illustrate the benefits of the proposed approach. Further application of the approach on the MNIST dataset within TensorFlow, illustrate that the presented approach can be incorporated in any of the existing machine learning libraries.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2022016\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2022016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
For any given neural network architecture a permutation of weights and biases results in the same functional network. This implies that optimization algorithms used to 'train' or 'learn' the network are faced with a very large number (in the millions even for small networks) of equivalent optimal solutions in the parameter space. To the best of our knowledge, this observation is absent in the literature. In order to narrow down the parameter search space, a novel technique is introduced in order to fix the bias vector configurations to be monotonically increasing. This is achieved by augmenting a typical learning problem with inequality constraints on the bias vectors in each layer. A Moreau-Yosida regularization based algorithm is proposed to handle these inequality constraints and a theoretical convergence of this algorithm is established. Applications of the proposed approach to standard trigonometric functions and more challenging stiff ordinary differential equations arising in chemically reacting flows clearly illustrate the benefits of the proposed approach. Further application of the approach on the MNIST dataset within TensorFlow, illustrate that the presented approach can be incorporated in any of the existing machine learning libraries.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.