Liang Zhang, Zexu Zhang, R. Siegwart, Jen Jen Chung
{"title":"一种连接预测算法及其在多机器人系统主动协同定位中的应用","authors":"Liang Zhang, Zexu Zhang, R. Siegwart, Jen Jen Chung","doi":"10.1109/ICRA40945.2020.9197083","DOIUrl":null,"url":null,"abstract":"This paper presents a method for predicting the probability of future connectivity between mobile robots with range-limited communication. In particular, we focus on its application to active motion planning for cooperative localization (CL). The probability of connection is modeled by the distribution of quadratic forms in random normal variables and is computed by the infinite power series expansion theorem. A finite-term approximation is made to realize the computational feasibility and three more modifications are designed to handle the adverse impacts introduced by the omission of the higher order series terms. On the basis of this algorithm, an active and CL problem with leader-follower architecture is then reformulated into a Markov Decision Process (MDP) with a one-step planning horizon, and the optimal motion strategy is generated by minimizing the expected cost of the MDP. Extensive simulations and comparisons are presented to show the effectiveness and efficiency of both the proposed prediction algorithm and the MDP model.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"14 1","pages":"9824-9830"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Connectivity-Prediction Algorithm and its Application in Active Cooperative Localization for Multi-Robot Systems\",\"authors\":\"Liang Zhang, Zexu Zhang, R. Siegwart, Jen Jen Chung\",\"doi\":\"10.1109/ICRA40945.2020.9197083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for predicting the probability of future connectivity between mobile robots with range-limited communication. In particular, we focus on its application to active motion planning for cooperative localization (CL). The probability of connection is modeled by the distribution of quadratic forms in random normal variables and is computed by the infinite power series expansion theorem. A finite-term approximation is made to realize the computational feasibility and three more modifications are designed to handle the adverse impacts introduced by the omission of the higher order series terms. On the basis of this algorithm, an active and CL problem with leader-follower architecture is then reformulated into a Markov Decision Process (MDP) with a one-step planning horizon, and the optimal motion strategy is generated by minimizing the expected cost of the MDP. Extensive simulations and comparisons are presented to show the effectiveness and efficiency of both the proposed prediction algorithm and the MDP model.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"14 1\",\"pages\":\"9824-9830\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Connectivity-Prediction Algorithm and its Application in Active Cooperative Localization for Multi-Robot Systems
This paper presents a method for predicting the probability of future connectivity between mobile robots with range-limited communication. In particular, we focus on its application to active motion planning for cooperative localization (CL). The probability of connection is modeled by the distribution of quadratic forms in random normal variables and is computed by the infinite power series expansion theorem. A finite-term approximation is made to realize the computational feasibility and three more modifications are designed to handle the adverse impacts introduced by the omission of the higher order series terms. On the basis of this algorithm, an active and CL problem with leader-follower architecture is then reformulated into a Markov Decision Process (MDP) with a one-step planning horizon, and the optimal motion strategy is generated by minimizing the expected cost of the MDP. Extensive simulations and comparisons are presented to show the effectiveness and efficiency of both the proposed prediction algorithm and the MDP model.