{"title":"多重拉盖尔多项式:组合模型与Stieltjes矩表示","authors":"A. Sokal","doi":"10.1090/proc/15775","DOIUrl":null,"url":null,"abstract":"I give a combinatorial interpretation of the multiple Laguerre polynomials of the first kind of type II, generalizing the digraph model found by Foata and Strehl for the ordinary Laguerre polynomials. I also give an explicit integral representation for these polynomials, which shows that they form a multidimensional Stieltjes moment sequence whenever $x \\le 0$.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiple Laguerre polynomials: Combinatorial model and Stieltjes moment representation\",\"authors\":\"A. Sokal\",\"doi\":\"10.1090/proc/15775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I give a combinatorial interpretation of the multiple Laguerre polynomials of the first kind of type II, generalizing the digraph model found by Foata and Strehl for the ordinary Laguerre polynomials. I also give an explicit integral representation for these polynomials, which shows that they form a multidimensional Stieltjes moment sequence whenever $x \\\\le 0$.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/15775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple Laguerre polynomials: Combinatorial model and Stieltjes moment representation
I give a combinatorial interpretation of the multiple Laguerre polynomials of the first kind of type II, generalizing the digraph model found by Foata and Strehl for the ordinary Laguerre polynomials. I also give an explicit integral representation for these polynomials, which shows that they form a multidimensional Stieltjes moment sequence whenever $x \le 0$.