Madan Parajuli, G. Sobreviela, Hemin Zhang, A. Seshia
{"title":"演示36 ppt频率稳定性的硅MEMS磁盘谐振振荡器","authors":"Madan Parajuli, G. Sobreviela, Hemin Zhang, A. Seshia","doi":"10.1109/Transducers50396.2021.9495722","DOIUrl":null,"url":null,"abstract":"This paper reports experimental results demonstrating excellent short-term frequency stability of 45.6 µLHz (36 ppt@0.4 s integration time) for a bulk acoustic wave (BAW) silicon disk resonator oscillator. The n=4 radial mode of a BAW disk resonator demonstrates an extremely high-quality factor of 1.8*106 at 1.25 MHz. The disk is designed with anchors aligned with nodal locations to minimize anchor damping. The results on the measured short-term frequency stability reported here benchmark favourably relative to the state-of-the-art.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"129 1","pages":"305-308"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Silicon MEMS Disk Resonator Oscillator Demonstrating 36 ppt Frequency Stability\",\"authors\":\"Madan Parajuli, G. Sobreviela, Hemin Zhang, A. Seshia\",\"doi\":\"10.1109/Transducers50396.2021.9495722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports experimental results demonstrating excellent short-term frequency stability of 45.6 µLHz (36 ppt@0.4 s integration time) for a bulk acoustic wave (BAW) silicon disk resonator oscillator. The n=4 radial mode of a BAW disk resonator demonstrates an extremely high-quality factor of 1.8*106 at 1.25 MHz. The disk is designed with anchors aligned with nodal locations to minimize anchor damping. The results on the measured short-term frequency stability reported here benchmark favourably relative to the state-of-the-art.\",\"PeriodicalId\":6814,\"journal\":{\"name\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"volume\":\"129 1\",\"pages\":\"305-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Transducers50396.2021.9495722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Silicon MEMS Disk Resonator Oscillator Demonstrating 36 ppt Frequency Stability
This paper reports experimental results demonstrating excellent short-term frequency stability of 45.6 µLHz (36 ppt@0.4 s integration time) for a bulk acoustic wave (BAW) silicon disk resonator oscillator. The n=4 radial mode of a BAW disk resonator demonstrates an extremely high-quality factor of 1.8*106 at 1.25 MHz. The disk is designed with anchors aligned with nodal locations to minimize anchor damping. The results on the measured short-term frequency stability reported here benchmark favourably relative to the state-of-the-art.