{"title":"加工参数对闭孔泡沫铝表面孔隙率的影响","authors":"B. Razboršek, Janez Gotlih, Timi Karner, M. Ficko","doi":"10.5545/sv-jme.2019.6297","DOIUrl":null,"url":null,"abstract":"Aluminium foam elements foamed into moulds, have a porous core, surrounded by a thin layer of non-porous outer surface. This layer affects the homogeneity and mechanical properties of the element significantly. To produce functional elements, the foams can be machined to a desired end shape. Machining deforms the surface structure, which results in a reduction of strength properties. This article describes an experimental approach to determine the effects of machining parameters on the surface porosity of closed-cell aluminium foam samples. The samples were machined by incremental forming and friction rolling with precisely defined processing parameters (deformation depth, feed rate and spindle speed). High-resolution digital photos of the treated surfaces were taken and analysed using image segmentation with a multispectral threshold algorithm. The change of surface porosity was calculated for each sample, and the influence of the selected machining parameters was determined by the use of response surface methodology. The optimal machining parameters are presented.","PeriodicalId":49472,"journal":{"name":"Strojniski Vestnik-Journal of Mechanical Engineering","volume":"52 1","pages":"29-37"},"PeriodicalIF":1.2000,"publicationDate":"2019-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The Influence of Machining Parameters on the Surface Porosity of a Closed-Cell Aluminium Foam\",\"authors\":\"B. Razboršek, Janez Gotlih, Timi Karner, M. Ficko\",\"doi\":\"10.5545/sv-jme.2019.6297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminium foam elements foamed into moulds, have a porous core, surrounded by a thin layer of non-porous outer surface. This layer affects the homogeneity and mechanical properties of the element significantly. To produce functional elements, the foams can be machined to a desired end shape. Machining deforms the surface structure, which results in a reduction of strength properties. This article describes an experimental approach to determine the effects of machining parameters on the surface porosity of closed-cell aluminium foam samples. The samples were machined by incremental forming and friction rolling with precisely defined processing parameters (deformation depth, feed rate and spindle speed). High-resolution digital photos of the treated surfaces were taken and analysed using image segmentation with a multispectral threshold algorithm. The change of surface porosity was calculated for each sample, and the influence of the selected machining parameters was determined by the use of response surface methodology. The optimal machining parameters are presented.\",\"PeriodicalId\":49472,\"journal\":{\"name\":\"Strojniski Vestnik-Journal of Mechanical Engineering\",\"volume\":\"52 1\",\"pages\":\"29-37\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojniski Vestnik-Journal of Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5545/sv-jme.2019.6297\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniski Vestnik-Journal of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5545/sv-jme.2019.6297","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The Influence of Machining Parameters on the Surface Porosity of a Closed-Cell Aluminium Foam
Aluminium foam elements foamed into moulds, have a porous core, surrounded by a thin layer of non-porous outer surface. This layer affects the homogeneity and mechanical properties of the element significantly. To produce functional elements, the foams can be machined to a desired end shape. Machining deforms the surface structure, which results in a reduction of strength properties. This article describes an experimental approach to determine the effects of machining parameters on the surface porosity of closed-cell aluminium foam samples. The samples were machined by incremental forming and friction rolling with precisely defined processing parameters (deformation depth, feed rate and spindle speed). High-resolution digital photos of the treated surfaces were taken and analysed using image segmentation with a multispectral threshold algorithm. The change of surface porosity was calculated for each sample, and the influence of the selected machining parameters was determined by the use of response surface methodology. The optimal machining parameters are presented.
期刊介绍:
The international journal publishes original and (mini)review articles covering the concepts of materials science, mechanics, kinematics, thermodynamics, energy and environment, mechatronics and robotics, fluid mechanics, tribology, cybernetics, industrial engineering and structural analysis.
The journal follows new trends and progress proven practice in the mechanical engineering and also in the closely related sciences as are electrical, civil and process engineering, medicine, microbiology, ecology, agriculture, transport systems, aviation, and others, thus creating a unique forum for interdisciplinary or multidisciplinary dialogue.