{"title":"时间规范下麦克斯韦-狄拉克系统的局部适定性","authors":"H. Pecher","doi":"10.3934/dcds.2022008","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider the low regularity well-posedness problem for the Maxwell-Dirac system in 3+1 dimensions:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{align*} \\partial^{\\mu} F_{\\mu \\nu} & = - \\langle \\psi, \\alpha_{\\nu} \\psi \\rangle \\ \\\\ -i \\alpha^{\\mu} \\partial_{\\mu} \\psi & = A_{\\mu} \\alpha^{\\mu} \\psi \\, , \\end{align*} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ F_{\\mu \\nu} = \\partial^{\\mu} A_{\\nu} - \\partial^{\\nu} A_{\\mu} $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\alpha^{\\mu} $\\end{document}</tex-math></inline-formula> are the 4x4 Dirac matrices. We assume the temporal gauge <inline-formula><tex-math id=\"M3\">\\begin{document}$ A_0 = 0 $\\end{document}</tex-math></inline-formula> and make use of the fact that some of the nonlinearities fulfill a null condition. Because we work in the temporal gauge we also apply a method, which was used by Tao for the Yang-Mills system.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local well-posedness for the Maxwell-Dirac system in temporal gauge\",\"authors\":\"H. Pecher\",\"doi\":\"10.3934/dcds.2022008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We consider the low regularity well-posedness problem for the Maxwell-Dirac system in 3+1 dimensions:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\begin{align*} \\\\partial^{\\\\mu} F_{\\\\mu \\\\nu} & = - \\\\langle \\\\psi, \\\\alpha_{\\\\nu} \\\\psi \\\\rangle \\\\ \\\\\\\\ -i \\\\alpha^{\\\\mu} \\\\partial_{\\\\mu} \\\\psi & = A_{\\\\mu} \\\\alpha^{\\\\mu} \\\\psi \\\\, , \\\\end{align*} $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ F_{\\\\mu \\\\nu} = \\\\partial^{\\\\mu} A_{\\\\nu} - \\\\partial^{\\\\nu} A_{\\\\mu} $\\\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\alpha^{\\\\mu} $\\\\end{document}</tex-math></inline-formula> are the 4x4 Dirac matrices. We assume the temporal gauge <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ A_0 = 0 $\\\\end{document}</tex-math></inline-formula> and make use of the fact that some of the nonlinearities fulfill a null condition. Because we work in the temporal gauge we also apply a method, which was used by Tao for the Yang-Mills system.</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2022008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2022008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
We consider the low regularity well-posedness problem for the Maxwell-Dirac system in 3+1 dimensions: \begin{document}$ \begin{align*} \partial^{\mu} F_{\mu \nu} & = - \langle \psi, \alpha_{\nu} \psi \rangle \ \\ -i \alpha^{\mu} \partial_{\mu} \psi & = A_{\mu} \alpha^{\mu} \psi \, , \end{align*} $\end{document} where \begin{document}$ F_{\mu \nu} = \partial^{\mu} A_{\nu} - \partial^{\nu} A_{\mu} $\end{document}, and \begin{document}$ \alpha^{\mu} $\end{document} are the 4x4 Dirac matrices. We assume the temporal gauge \begin{document}$ A_0 = 0 $\end{document} and make use of the fact that some of the nonlinearities fulfill a null condition. Because we work in the temporal gauge we also apply a method, which was used by Tao for the Yang-Mills system.
where \begin{document}$ F_{\mu \nu} = \partial^{\mu} A_{\nu} - \partial^{\nu} A_{\mu} $\end{document}, and \begin{document}$ \alpha^{\mu} $\end{document} are the 4x4 Dirac matrices. We assume the temporal gauge \begin{document}$ A_0 = 0 $\end{document} and make use of the fact that some of the nonlinearities fulfill a null condition. Because we work in the temporal gauge we also apply a method, which was used by Tao for the Yang-Mills system.