结合ASP和SMT求解的系统级决策新模型

Alexander Biewer, J. Gladigau, C. Haubelt
{"title":"结合ASP和SMT求解的系统级决策新模型","authors":"Alexander Biewer, J. Gladigau, C. Haubelt","doi":"10.7873/DATE.2014.230","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel model enabling system-level decision making for time-triggered many-core architectures in automotive systems. The proposed application model includes shared data entities that need to be bound to memories during decision making. As a key enabler to our approach, we explicitly separate computation and shared memory communication over a network-on-chip (NoC). To deal with contention on a NoC, we model the necessary basis to implement a time-triggered schedule that guarantees freedom of interference. We compute fundamental design decisions, namely (a) spatial binding, (b) multi-hop routing, and (c) time-triggered scheduling, by a novel coupling of answer set programming (ASP) with satisfiability modulo theories (SMT) solvers. First results of an automotive case study demonstrate the applicability of our method for complex real-world applications.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"50 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel model for system-level decision making with combined ASP and SMT solving\",\"authors\":\"Alexander Biewer, J. Gladigau, C. Haubelt\",\"doi\":\"10.7873/DATE.2014.230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel model enabling system-level decision making for time-triggered many-core architectures in automotive systems. The proposed application model includes shared data entities that need to be bound to memories during decision making. As a key enabler to our approach, we explicitly separate computation and shared memory communication over a network-on-chip (NoC). To deal with contention on a NoC, we model the necessary basis to implement a time-triggered schedule that guarantees freedom of interference. We compute fundamental design decisions, namely (a) spatial binding, (b) multi-hop routing, and (c) time-triggered scheduling, by a novel coupling of answer set programming (ASP) with satisfiability modulo theories (SMT) solvers. First results of an automotive case study demonstrate the applicability of our method for complex real-world applications.\",\"PeriodicalId\":6550,\"journal\":{\"name\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"50 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2014.230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种新的模型,使汽车系统中时间触发多核架构的系统级决策成为可能。建议的应用程序模型包括在决策过程中需要绑定到内存的共享数据实体。作为我们方法的关键推动者,我们通过片上网络(NoC)显式地分离了计算和共享内存通信。为了处理NoC上的争用,我们建立了必要的基础模型,以实现时间触发的时间表,以保证干扰自由。我们计算基本的设计决策,即(a)空间绑定,(b)多跳路由和(c)时间触发调度,通过答案集规划(ASP)与可满足模理论(SMT)求解器的新颖耦合。汽车案例研究的第一个结果证明了我们的方法在复杂的现实世界应用中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel model for system-level decision making with combined ASP and SMT solving
In this paper, we present a novel model enabling system-level decision making for time-triggered many-core architectures in automotive systems. The proposed application model includes shared data entities that need to be bound to memories during decision making. As a key enabler to our approach, we explicitly separate computation and shared memory communication over a network-on-chip (NoC). To deal with contention on a NoC, we model the necessary basis to implement a time-triggered schedule that guarantees freedom of interference. We compute fundamental design decisions, namely (a) spatial binding, (b) multi-hop routing, and (c) time-triggered scheduling, by a novel coupling of answer set programming (ASP) with satisfiability modulo theories (SMT) solvers. First results of an automotive case study demonstrate the applicability of our method for complex real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信