{"title":"基于图像的静态面部表情识别与多重深度网络学习","authors":"Zhiding Yu, Cha Zhang","doi":"10.1145/2818346.2830595","DOIUrl":null,"url":null,"abstract":"We report our image based static facial expression recognition method for the Emotion Recognition in the Wild Challenge (EmotiW) 2015. We focus on the sub-challenge of the SFEW 2.0 dataset, where one seeks to automatically classify a set of static images into 7 basic emotions. The proposed method contains a face detection module based on the ensemble of three state-of-the-art face detectors, followed by a classification module with the ensemble of multiple deep convolutional neural networks (CNN). Each CNN model is initialized randomly and pre-trained on a larger dataset provided by the Facial Expression Recognition (FER) Challenge 2013. The pre-trained models are then fine-tuned on the training set of SFEW 2.0. To combine multiple CNN models, we present two schemes for learning the ensemble weights of the network responses: by minimizing the log likelihood loss, and by minimizing the hinge loss. Our proposed method generates state-of-the-art result on the FER dataset. It also achieves 55.96% and 61.29% respectively on the validation and test set of SFEW 2.0, surpassing the challenge baseline of 35.96% and 39.13% with significant gains.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"537","resultStr":"{\"title\":\"Image based Static Facial Expression Recognition with Multiple Deep Network Learning\",\"authors\":\"Zhiding Yu, Cha Zhang\",\"doi\":\"10.1145/2818346.2830595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report our image based static facial expression recognition method for the Emotion Recognition in the Wild Challenge (EmotiW) 2015. We focus on the sub-challenge of the SFEW 2.0 dataset, where one seeks to automatically classify a set of static images into 7 basic emotions. The proposed method contains a face detection module based on the ensemble of three state-of-the-art face detectors, followed by a classification module with the ensemble of multiple deep convolutional neural networks (CNN). Each CNN model is initialized randomly and pre-trained on a larger dataset provided by the Facial Expression Recognition (FER) Challenge 2013. The pre-trained models are then fine-tuned on the training set of SFEW 2.0. To combine multiple CNN models, we present two schemes for learning the ensemble weights of the network responses: by minimizing the log likelihood loss, and by minimizing the hinge loss. Our proposed method generates state-of-the-art result on the FER dataset. It also achieves 55.96% and 61.29% respectively on the validation and test set of SFEW 2.0, surpassing the challenge baseline of 35.96% and 39.13% with significant gains.\",\"PeriodicalId\":20486,\"journal\":{\"name\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"537\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818346.2830595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2830595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image based Static Facial Expression Recognition with Multiple Deep Network Learning
We report our image based static facial expression recognition method for the Emotion Recognition in the Wild Challenge (EmotiW) 2015. We focus on the sub-challenge of the SFEW 2.0 dataset, where one seeks to automatically classify a set of static images into 7 basic emotions. The proposed method contains a face detection module based on the ensemble of three state-of-the-art face detectors, followed by a classification module with the ensemble of multiple deep convolutional neural networks (CNN). Each CNN model is initialized randomly and pre-trained on a larger dataset provided by the Facial Expression Recognition (FER) Challenge 2013. The pre-trained models are then fine-tuned on the training set of SFEW 2.0. To combine multiple CNN models, we present two schemes for learning the ensemble weights of the network responses: by minimizing the log likelihood loss, and by minimizing the hinge loss. Our proposed method generates state-of-the-art result on the FER dataset. It also achieves 55.96% and 61.29% respectively on the validation and test set of SFEW 2.0, surpassing the challenge baseline of 35.96% and 39.13% with significant gains.