{"title":"代数循环与三次曲线的交点","authors":"R. Laterveer","doi":"10.1017/S030500412100058X","DOIUrl":null,"url":null,"abstract":"Abstract Let Y be a smooth complete intersection of three quadrics, and assume the dimension of Y is even. We show that Y has a multiplicative Chow–Künneth decomposition, in the sense of Shen–Vial. As a consequence, the Chow ring of (powers of) Y displays K3-like behaviour. As a by-product of the argument, we also establish a multiplicative Chow–Künneth decomposition for double planes.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"1 1","pages":"349 - 367"},"PeriodicalIF":0.6000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Algebraic cycles and intersections of three quadrics\",\"authors\":\"R. Laterveer\",\"doi\":\"10.1017/S030500412100058X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let Y be a smooth complete intersection of three quadrics, and assume the dimension of Y is even. We show that Y has a multiplicative Chow–Künneth decomposition, in the sense of Shen–Vial. As a consequence, the Chow ring of (powers of) Y displays K3-like behaviour. As a by-product of the argument, we also establish a multiplicative Chow–Künneth decomposition for double planes.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"1 1\",\"pages\":\"349 - 367\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S030500412100058X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S030500412100058X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6
摘要
摘要:设Y为三个二次曲面的光滑完全交,并设Y的维数为偶。在Shen-Vial的意义上,我们证明Y具有乘法的chow - k n次分解。因此,Y的(幂)周氏环表现出类似k3的行为。作为论证的副产品,我们还建立了双平面的乘法周-克第n次分解。
Algebraic cycles and intersections of three quadrics
Abstract Let Y be a smooth complete intersection of three quadrics, and assume the dimension of Y is even. We show that Y has a multiplicative Chow–Künneth decomposition, in the sense of Shen–Vial. As a consequence, the Chow ring of (powers of) Y displays K3-like behaviour. As a by-product of the argument, we also establish a multiplicative Chow–Künneth decomposition for double planes.
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.