MEFM在修正Boussinesq方程中的应用

IF 2.2 Q1 MATHEMATICS, APPLIED
Tolga Akturk
{"title":"MEFM在修正Boussinesq方程中的应用","authors":"Tolga Akturk","doi":"10.11121/IJOCTA.01.2019.00622","DOIUrl":null,"url":null,"abstract":"In this paper, some travelling wave solutions of the Modified Boussinesq (MBQ) equation are obtained by using the modified expansion function method (MEFM). When the obtained solutions are commented, trigonometric functions including hyperbolic features are obtained. The 2D and 3D graphics of the solutions have been investigated by selecting appropriate parameters. All the obtained solutions provide the MBQ equation. In this work, all mathematical calculations are done with Wolfram Mathematica software. ","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"12 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An application of the MEFM to the modified Boussinesq equation\",\"authors\":\"Tolga Akturk\",\"doi\":\"10.11121/IJOCTA.01.2019.00622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, some travelling wave solutions of the Modified Boussinesq (MBQ) equation are obtained by using the modified expansion function method (MEFM). When the obtained solutions are commented, trigonometric functions including hyperbolic features are obtained. The 2D and 3D graphics of the solutions have been investigated by selecting appropriate parameters. All the obtained solutions provide the MBQ equation. In this work, all mathematical calculations are done with Wolfram Mathematica software. \",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/IJOCTA.01.2019.00622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/IJOCTA.01.2019.00622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文利用修正展开函数法(MEFM),得到了修正Boussinesq (MBQ)方程的若干行波解。对得到的解进行注释,得到包含双曲特征的三角函数。通过选择合适的参数,研究了解的二维和三维图形。所有得到的解都提供了MBQ方程。在这项工作中,所有的数学计算都是用Wolfram Mathematica软件完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An application of the MEFM to the modified Boussinesq equation
In this paper, some travelling wave solutions of the Modified Boussinesq (MBQ) equation are obtained by using the modified expansion function method (MEFM). When the obtained solutions are commented, trigonometric functions including hyperbolic features are obtained. The 2D and 3D graphics of the solutions have been investigated by selecting appropriate parameters. All the obtained solutions provide the MBQ equation. In this work, all mathematical calculations are done with Wolfram Mathematica software. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信