基于内容的机器学习人脸情感识别模型

Ranjana S. Jadhav, P. Ghadekar
{"title":"基于内容的机器学习人脸情感识别模型","authors":"Ranjana S. Jadhav, P. Ghadekar","doi":"10.1109/ICACAT.2018.8933790","DOIUrl":null,"url":null,"abstract":"Emotion recognition or sentiment analysis is identified as an important research topic in computer vision community. The challenges include identification of face, recognition of accurate emotion, appropriate database and so on. We have proposed and implemented a general Convolutional Neural network (CNN) building framework for emotion recognition. The model is formalized by developing a coincident system which fulfills the tasks of face detection and emotion classification using our proposed CNN architecture. The model is validated using the FER-2013 dataset. In the proposed work, we discuss the applicability of the proposed CNN model. This model lays a valuable analysis of the effect of adjusting the network size, pooling, and dropout. For a given model, the final accuracy on the validation data is around 63%.","PeriodicalId":6575,"journal":{"name":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","volume":"12 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Content Based Facial Emotion Recognition Model using Machine Learning Algorithm\",\"authors\":\"Ranjana S. Jadhav, P. Ghadekar\",\"doi\":\"10.1109/ICACAT.2018.8933790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion recognition or sentiment analysis is identified as an important research topic in computer vision community. The challenges include identification of face, recognition of accurate emotion, appropriate database and so on. We have proposed and implemented a general Convolutional Neural network (CNN) building framework for emotion recognition. The model is formalized by developing a coincident system which fulfills the tasks of face detection and emotion classification using our proposed CNN architecture. The model is validated using the FER-2013 dataset. In the proposed work, we discuss the applicability of the proposed CNN model. This model lays a valuable analysis of the effect of adjusting the network size, pooling, and dropout. For a given model, the final accuracy on the validation data is around 63%.\",\"PeriodicalId\":6575,\"journal\":{\"name\":\"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)\",\"volume\":\"12 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACAT.2018.8933790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Computation and Telecommunication (ICACAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACAT.2018.8933790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

情感识别或情感分析是计算机视觉领域的一个重要研究课题。面临的挑战包括人脸识别、准确的情绪识别、合适的数据库等。我们提出并实现了一个通用的卷积神经网络(CNN)构建框架,用于情感识别。该模型通过开发一个符合系统来形式化,该系统使用我们提出的CNN架构来完成人脸检测和情感分类的任务。利用FER-2013数据集对模型进行了验证。在本文中,我们讨论了所提出的CNN模型的适用性。该模型对调整网络规模、池化和退出的效果进行了有价值的分析。对于给定的模型,验证数据的最终精度约为63%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content Based Facial Emotion Recognition Model using Machine Learning Algorithm
Emotion recognition or sentiment analysis is identified as an important research topic in computer vision community. The challenges include identification of face, recognition of accurate emotion, appropriate database and so on. We have proposed and implemented a general Convolutional Neural network (CNN) building framework for emotion recognition. The model is formalized by developing a coincident system which fulfills the tasks of face detection and emotion classification using our proposed CNN architecture. The model is validated using the FER-2013 dataset. In the proposed work, we discuss the applicability of the proposed CNN model. This model lays a valuable analysis of the effect of adjusting the network size, pooling, and dropout. For a given model, the final accuracy on the validation data is around 63%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信