D. Menge, S. Kou‐Giesbrecht, B. Taylor, P. Akana, Ayanna Butler, K. A. Carreras Pereira, S. Cooley, Vanessa M. Lau, Emma L. Lauterbach
{"title":"陆地磷循环:对气候变化的响应","authors":"D. Menge, S. Kou‐Giesbrecht, B. Taylor, P. Akana, Ayanna Butler, K. A. Carreras Pereira, S. Cooley, Vanessa M. Lau, Emma L. Lauterbach","doi":"10.1146/annurev-ecolsys-110421-102458","DOIUrl":null,"url":null,"abstract":"Phosphorus (P) limits productivity in many ecosystems and has the potential to constrain the global carbon sink. The magnitude of these effects depends on how climate change and rising CO2 affect P cycling. Some effects are well established. First, P limitation often constrains CO2 fertilization, and rising CO2 often exacerbates P limitation. Second, P limitation and P constraints to CO2 fertilization are more common in warmer and wetter sites. Models that couple P cycling to vegetation generally capture these outcomes. However, due largely to differences between short-term and long-term dynamics, the patterns observed across climatic gradients do not necessarily indicate how climate change over years to decades will modify P limitation. These annual-to-decadal effects are not well understood. Furthermore, even for the well-understood patterns, much remains to be learned about the quantitative details, mechanisms, and drivers of variability. The interface between empirical and modeling work is particularly ripe for development. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Terrestrial Phosphorus Cycling: Responses to Climatic Change\",\"authors\":\"D. Menge, S. Kou‐Giesbrecht, B. Taylor, P. Akana, Ayanna Butler, K. A. Carreras Pereira, S. Cooley, Vanessa M. Lau, Emma L. Lauterbach\",\"doi\":\"10.1146/annurev-ecolsys-110421-102458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphorus (P) limits productivity in many ecosystems and has the potential to constrain the global carbon sink. The magnitude of these effects depends on how climate change and rising CO2 affect P cycling. Some effects are well established. First, P limitation often constrains CO2 fertilization, and rising CO2 often exacerbates P limitation. Second, P limitation and P constraints to CO2 fertilization are more common in warmer and wetter sites. Models that couple P cycling to vegetation generally capture these outcomes. However, due largely to differences between short-term and long-term dynamics, the patterns observed across climatic gradients do not necessarily indicate how climate change over years to decades will modify P limitation. These annual-to-decadal effects are not well understood. Furthermore, even for the well-understood patterns, much remains to be learned about the quantitative details, mechanisms, and drivers of variability. The interface between empirical and modeling work is particularly ripe for development. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":7988,\"journal\":{\"name\":\"Annual Review of Ecology, Evolution, and Systematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Ecology, Evolution, and Systematics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-ecolsys-110421-102458\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Ecology, Evolution, and Systematics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-ecolsys-110421-102458","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Terrestrial Phosphorus Cycling: Responses to Climatic Change
Phosphorus (P) limits productivity in many ecosystems and has the potential to constrain the global carbon sink. The magnitude of these effects depends on how climate change and rising CO2 affect P cycling. Some effects are well established. First, P limitation often constrains CO2 fertilization, and rising CO2 often exacerbates P limitation. Second, P limitation and P constraints to CO2 fertilization are more common in warmer and wetter sites. Models that couple P cycling to vegetation generally capture these outcomes. However, due largely to differences between short-term and long-term dynamics, the patterns observed across climatic gradients do not necessarily indicate how climate change over years to decades will modify P limitation. These annual-to-decadal effects are not well understood. Furthermore, even for the well-understood patterns, much remains to be learned about the quantitative details, mechanisms, and drivers of variability. The interface between empirical and modeling work is particularly ripe for development. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Ecology, Evolution, and Systematics is a scholarly publication that has been in circulation since 1970. It focuses on important advancements in the areas of ecology, evolutionary biology, and systematics, with relevance to all forms of life on Earth. The journal features essay reviews that encompass various topics such as phylogeny, speciation, molecular evolution, behavior, evolutionary physiology, population dynamics, ecosystem processes, and applications in invasion biology, conservation, and environmental management. Recently, the current volume of the journal transitioned from a subscription-based model to open access through the Annual Reviews' Subscribe to Open program. Consequently, all articles published in the current volume are now available under a CC BY license.