{"title":"飞秒激光光谱学和单线态裂变","authors":"G. Gurzadyan","doi":"10.4172/2469-410X.1000E109","DOIUrl":null,"url":null,"abstract":"Singlet exciton fission or singlet fission (SF) is a process in which a singlet excited molecule, usually in a densely packed organic solid or in a polymer, shares its energy with a neighboring molecule in its electronic ground state, both molecules forming a pair of triplet states in a spin allowed process. SF was first proposed in 1965 to explain the delayed fluorescence in anthracene crystal [1]. It was further proven by the magnetic field effect on tetracene crystal [2,3]. Interest towards SF rises in recent years due to its potential applications in photovoltaics. SF may dramatically increase efficiency of the solar cells.","PeriodicalId":92245,"journal":{"name":"Journal of lasers, optics & photonics","volume":"47 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Femtosecond Laser Spectroscopy and Singlet Fission\",\"authors\":\"G. Gurzadyan\",\"doi\":\"10.4172/2469-410X.1000E109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Singlet exciton fission or singlet fission (SF) is a process in which a singlet excited molecule, usually in a densely packed organic solid or in a polymer, shares its energy with a neighboring molecule in its electronic ground state, both molecules forming a pair of triplet states in a spin allowed process. SF was first proposed in 1965 to explain the delayed fluorescence in anthracene crystal [1]. It was further proven by the magnetic field effect on tetracene crystal [2,3]. Interest towards SF rises in recent years due to its potential applications in photovoltaics. SF may dramatically increase efficiency of the solar cells.\",\"PeriodicalId\":92245,\"journal\":{\"name\":\"Journal of lasers, optics & photonics\",\"volume\":\"47 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of lasers, optics & photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2469-410X.1000E109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers, optics & photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-410X.1000E109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Femtosecond Laser Spectroscopy and Singlet Fission
Singlet exciton fission or singlet fission (SF) is a process in which a singlet excited molecule, usually in a densely packed organic solid or in a polymer, shares its energy with a neighboring molecule in its electronic ground state, both molecules forming a pair of triplet states in a spin allowed process. SF was first proposed in 1965 to explain the delayed fluorescence in anthracene crystal [1]. It was further proven by the magnetic field effect on tetracene crystal [2,3]. Interest towards SF rises in recent years due to its potential applications in photovoltaics. SF may dramatically increase efficiency of the solar cells.