飞秒激光光谱学和单线态裂变

G. Gurzadyan
{"title":"飞秒激光光谱学和单线态裂变","authors":"G. Gurzadyan","doi":"10.4172/2469-410X.1000E109","DOIUrl":null,"url":null,"abstract":"Singlet exciton fission or singlet fission (SF) is a process in which a singlet excited molecule, usually in a densely packed organic solid or in a polymer, shares its energy with a neighboring molecule in its electronic ground state, both molecules forming a pair of triplet states in a spin allowed process. SF was first proposed in 1965 to explain the delayed fluorescence in anthracene crystal [1]. It was further proven by the magnetic field effect on tetracene crystal [2,3]. Interest towards SF rises in recent years due to its potential applications in photovoltaics. SF may dramatically increase efficiency of the solar cells.","PeriodicalId":92245,"journal":{"name":"Journal of lasers, optics & photonics","volume":"47 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Femtosecond Laser Spectroscopy and Singlet Fission\",\"authors\":\"G. Gurzadyan\",\"doi\":\"10.4172/2469-410X.1000E109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Singlet exciton fission or singlet fission (SF) is a process in which a singlet excited molecule, usually in a densely packed organic solid or in a polymer, shares its energy with a neighboring molecule in its electronic ground state, both molecules forming a pair of triplet states in a spin allowed process. SF was first proposed in 1965 to explain the delayed fluorescence in anthracene crystal [1]. It was further proven by the magnetic field effect on tetracene crystal [2,3]. Interest towards SF rises in recent years due to its potential applications in photovoltaics. SF may dramatically increase efficiency of the solar cells.\",\"PeriodicalId\":92245,\"journal\":{\"name\":\"Journal of lasers, optics & photonics\",\"volume\":\"47 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of lasers, optics & photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2469-410X.1000E109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers, optics & photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2469-410X.1000E109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

单线态激子裂变或单线态裂变(SF)是一种过程,通常在密集的有机固体或聚合物中,单线态激发态分子与处于电子基态的相邻分子分享能量,两个分子在允许自旋的过程中形成一对三重态。SF于1965年首次被提出,用于解释蒽晶体中的延迟荧光[1]。磁场对四烯晶体的影响进一步证明了这一点[2,3]。近年来,由于其在光伏领域的潜在应用,人们对SF的兴趣日益浓厚。SF可以显著提高太阳能电池的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Femtosecond Laser Spectroscopy and Singlet Fission
Singlet exciton fission or singlet fission (SF) is a process in which a singlet excited molecule, usually in a densely packed organic solid or in a polymer, shares its energy with a neighboring molecule in its electronic ground state, both molecules forming a pair of triplet states in a spin allowed process. SF was first proposed in 1965 to explain the delayed fluorescence in anthracene crystal [1]. It was further proven by the magnetic field effect on tetracene crystal [2,3]. Interest towards SF rises in recent years due to its potential applications in photovoltaics. SF may dramatically increase efficiency of the solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信